Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Mendelelian Genetics 2 Gregor Mendel (1822-1884) Responsible for the Laws governing Inheritance of Traits.

Similar presentations


Presentation on theme: "1 Mendelelian Genetics 2 Gregor Mendel (1822-1884) Responsible for the Laws governing Inheritance of Traits."— Presentation transcript:

1

2 1 Mendelelian Genetics

3 2 Gregor Mendel (1822-1884) Responsible for the Laws governing Inheritance of Traits

4 3 Gregor Johann Mendel  Austrian monk  Studied the inheritance of traits in pea plants  Developed the laws of inheritance  Mendel's work was not recognized until the turn of the 20th century

5 4 Gregor Johann Mendel  Between 1856 and 1863, Mendel cultivated and tested some 28,000 pea plants  He found that the plants' offspring retained traits of the parents  Called the “Father of Genetics"

6 5 Site of Gregor Mendel’s experimental garden in the Czech Republic

7 6  Mendel stated that physical traits are inherited as “particles”  Mendel did not know that the “particles” were actually Chromosomes & DNA Particulate Inheritance

8 7 Types of Genetic Crosses  Monohybrid cross - cross involving a single trait e.g. flower color  Dihybrid cross - cross involving two traits e.g. flower color & plant height

9 8 Punnett Square Used to help solve genetics problems

10 9

11 10 Genetic Terminology  Trait - any characteristic that can be passed from parent to offspring  Heredity - passing of traits from parent to offspring  Genetics - study of heredity

12 11  Alleles - two forms of a gene (dominant & recessive)  Dominant - stronger of two genes expressed in the hybrid; represented by a capital letter (R)  Recessive - gene that shows up less often in a cross; represented by a lowercase letter (r)

13 12  Genotype - gene combination for a trait (e.g. RR, Rr, rr)  Phenotype - the physical feature resulting from a genotype (e.g. red, white)

14 13 Genotypes  Homozygous genotype - gene combination involving 2 dominant or 2 recessive genes (e.g. RR or rr); also called pure or purebred  Heterozygous genotype - gene combination of one dominant & one recessive allele (e.g. Rr); also called hybrid

15 14 Genotype & Phenotype in Flowers Genotype of alleles: R = red flower r = yellow flower All genes occur in pairs, so 2 alleles affect a characteristic Possible combinations are: GenotypesRR Rrrr PhenotypesRED RED YELLOW

16 stop 15

17 16 Genes and Environment Determine Characteristics

18 17 Mendel’s Pea Plant Experiments

19 18 Why peas, Pisum sativum?  Can be grown in a small area  Produce lots of offspring  Produce pure plants when allowed to self-pollinate several generations  Can be artificially cross-pollinated

20 19 Reproduction in Flowering Plants Pollen contains sperm Produced by the stamen Ovary contains eggs Found inside the flower Pollen carries sperm to the eggs for fertilization Self-fertilization can occur in the same flower Cross-fertilization can occur between flowers

21 20 Mendel’s Experimental Methods Mendel hand-pollinated flowers using a paintbrush He could snip the stamens to prevent self-pollination He traced traits through the several generations

22 21 How Mendel Began Mendel produced pure strains by allowing the plants to self- pollinate for several generations

23 22 Eight Pea Plant Traits Seed shape --- Round (R) or Wrinkled (r) Seed Color ---- Yellow (Y) or Green (y) Pod Shape --- Smooth (S) or wrinkled (s) Pod Color --- Green (G) or Yellow (g) Seed Coat Color ---Gray (G) or White (g) Flower position---Axial (A) or Terminal (a) Plant Height --- Tall (T) or Short (t) Flower color --- Purple (P) or white (p)

24 23

25 24

26 25 Mendel’s Experimental Results

27 26 Did the observed ratio match the theoretical ratio? The theoretical or expected ratio of plants producing round or wrinkled seeds is 3 round :1 wrinkled Mendel’s observed ratio was 2.96:1 The discrepancy is due to statistical error The larger the sample the more nearly the results approximate to the theoretical ratio

28 27 Generation “Gap” Parental P 1 Generation = the parental generation in a breeding experiment. F 1 generation = the first-generation offspring in a breeding experiment. (1st filial generation) From breeding individuals from the P 1 generation F 2 generation = the second-generation offspring in a breeding experiment. (2nd filial generation) From breeding individuals from the F 1 generation From breeding individuals from the F 1 generation

29 28 Following the Generations Cross 2 Pure Plants TT x tt Results in all Hybrids Tt Cross 2 Hybrids get 3 Tall & 1 Short TT, Tt, tt

30 stop 29

31 30 Monohybrid Crosses

32 31 Trait: Seed Shape Alleles: R – Roundr – Wrinkled Cross: Round seeds x Wrinkled seeds RR x rr P 1 Monohybrid Cross R R rr Rr Genotype:Rr Genotype: Rr PhenotypeRound Phenotype: Round Genotypic Ratio:All alike Genotypic Ratio: All alike Phenotypic Ratio: All alike

33 32 P 1 Monohybrid Cross Review  Homozygous dominant x Homozygous recessive  Offspring all Heterozygous (hybrids)  Offspring called F 1 generation  Genotypic & Phenotypic ratio is ALL ALIKE

34 33 Trait: Seed Shape Alleles: R – Roundr – Wrinkled Cross: Round seeds x Round seeds Rr x Rr F 1 Monohybrid Cross R r rR RR rrRr Genotype:RR, Rr, rr Genotype: RR, Rr, rr PhenotypeRound & wrinkled Phenotype: Round & wrinkled G.Ratio:1:2:1 G.Ratio: 1:2:1 P.Ratio: 3:1

35 34 F 1 Monohybrid Cross Review  Heterozygous x heterozygous  Offspring: 25% Homozygous dominant RR 50% Heterozygous Rr 25% Homozygous Recessive rr  Offspring called F 2 generation  Genotypic ratio is 1:2:1  Phenotypic Ratio is 3:1

36 35 What Do the Peas Look Like?

37 36 …And Now the Test Cross Mendel then crossed a pure & a hybrid from his F 2 generation This is known as an F 2 or test cross There are two possible testcrosses: Homozygous dominant x Hybrid Homozygous recessive x Hybrid

38 37 Trait: Seed Shape Alleles: R – Roundr – Wrinkled Cross: Round seeds x Round seeds RR x Rr F 2 Monohybrid Cross (1 st ) R R rR RR RrRR Rr Genotype:RR, Rr Genotype: RR, Rr PhenotypeRound Phenotype: Round Genotypic Ratio:1:1 Genotypic Ratio: 1:1 Phenotypic Ratio: All alike

39 38 Trait: Seed Shape Alleles: R – Roundr – Wrinkled Cross: Wrinkled seeds x Round seeds rr x Rr F 2 Monohybrid Cross (2nd) r r rR Rr rrRr rr Genotype:Rr, rr Genotype: Rr, rr PhenotypeRound & Wrinkled Phenotype: Round & Wrinkled G. Ratio:1:1 G. Ratio: 1:1 P.Ratio: 1:1

40 39 F 2 Monohybrid Cross Review  Homozygous x heterozygous(hybrid)  Offspring: 50% Homozygous RR or rr 50% Heterozygous Rr  Phenotypic Ratio is 1:1  Called Test Cross because the offspring have SAME genotype as parents

41 40 Practice Your Crosses Work the P 1, F 1, and both F 2 Crosses. Pick 2 of the Pea Plant Traits that Mendel used. In your answer show the cross, the punnett square, and the Genotypic and Phenotypic ratios for all three crosses.

42 41 Mendel’s Laws

43 42 Results of Monohybrid Crosses Inheritable factors or genes are responsible for all heritable characteristics Phenotype is based on Genotype Each trait is based on two genes, one from the mother and the other from the father True-breeding individuals are homozygous ( both alleles) are the same

44 43 Law of Dominance In a cross of parents that are pure for contrasting traits, only one form of the trait will appear in the next generation. All the offspring will be heterozygous and express only the dominant trait. RR x rr yields all Rr (round seeds)

45 44 Law of Dominance

46 45 Law of Segregation During the formation of gametes (eggs or sperm), the two alleles responsible for a trait separate from each other. Alleles for a trait are then "recombined" at fertilization, producing the genotype for the traits of the offspring Alleles for a trait are then "recombined" at fertilization, producing the genotype for the traits of the offspring.

47 46 Applying the Law of Segregation

48 47 Law of Independent Assortment Alleles for different traits are distributed to sex cells (& offspring) independently of one another. This law can be illustrated using dihybrid crosses.

49 48 Dihybrid Cross A breeding experiment that tracks the inheritance of two traits. Mendel’s “Law of Independent Assortment” a. Each pair of alleles segregates independently during gamete formation b. Formula: 2 n (n = # of heterozygotes)

50 49 Question: How many gametes will be produced for the following allele arrangements? Remember: 2 n (n = # of heterozygotes) 1.RrYy 2.AaBbCCDd 3.MmNnOoPPQQRrssTtQq

51 50 Answer: 1. RrYy: 2 n = 2 2 = 4 gametes RY Ry rY ry 2. AaBbCCDd: 2 n = 2 3 = 8 gametes ABCD ABCd AbCD AbCd aBCD aBCd abCD abCD 3. MmNnOoPPQQRrssTtQq: 2 n = 2 6 = 64 gametes

52 51 Dihybrid Cross Traits: Seed shape & Seed color Alleles: Alleles: R round r wrinkled Y yellow y green RrYy x RrYy RY Ry rY ry All possible gamete combinations

53 52 Dihybrid Cross RYRyrYry RYRy rY ry

54 53 Dihybrid Cross RRYY RRYy RrYY RrYy RRYy RRyy RrYy Rryy RrYY RrYy rrYY rrYy RrYy Rryy rrYy rryy Round/Yellow: 9 Round/green: 3 wrinkled/Yellow: 3 wrinkled/green: 1 9:3:3:1 phenotypic ratio RYRyrYryRY Ry rY ry

55 54 Dihybrid Cross Round/Yellow: 9 Round/green: 3 wrinkled/Yellow: 3 wrinkled/green: 1 9:3:3:1

56 55 Test Cross A mating between an individual of unknown genotype and a homozygous recessive individual. Example: bbC__ x bbcc BB = brown eyes Bb = brown eyes bb = blue eyes CC = curly hair Cc = curly hair cc = straight hair bCb___bc

57 56 Test Cross Possible results: bCb___bcbbCc CbCb___bc bbccor c

58 57 Summary of Mendel’s laws LAW PARENT CROSS OFFSPRING DOMINANCE TT x tt tall x short 100% Tt tall SEGREGATION Tt x Tt tall x tall 75% tall 25% short INDEPENDENT ASSORTMENT RrGg x RrGg round & green x round & green 9/16 round seeds & green pods 3/16 round seeds & yellow pods 3/16 wrinkled seeds & green pods 1/16 wrinkled seeds & yellow pods

59 58 Incomplete Dominance and Codominance (Exception to Mendel’s Law)

60 59 Incomplete Dominance F1 hybrids in betweenphenotypes F1 hybrids have an appearance somewhat in between the phenotypes of the two parental varieties. Example:snapdragons (flower) Example: snapdragons (flower) red (RR) x white (rr) RR = red flower rr = white flower R R rr

61 60 Incomplete Dominance RrRrRrRr R Rr All Rr = pink (heterozygous pink) produces the F 1 generation r

62 61 Incomplete Dominance

63 62 Codominance Two alleles are expressed (multiple alleles) in heterozygous individuals. Example: blood type 1.type A= I A I A or I A i 2.type B= I B I B or I B i 3.type AB= I A I B 4.type O= ii

64 63 Codominance Problem Example:homozygous male Type B (I B I B ) x heterozygous female Type A (I A i) IAIBIAIB IBiIBi IAIBIAIB IBiIBi 1/2 = I A I B 1/2 = I B i IBIB IAIA i IBIB

65 64 Another Codominance Problem Example:Example: male Type O (ii) x female type AB (I A I B ) IAiIAiIBiIBi IAiIAiIBiIBi 1/2 = I A i 1/2 = I B i i IAIA IBIB i

66 65 Codominance Question: If a boy has a blood type O and his sister has blood type AB, what are the genotypes and phenotypes of their parents? boy - type O (ii) X girl - type AB (I A I B )

67 66 Codominance Answer: IAIBIAIB ii Parents: genotypes genotypes = I A i and I B i phenotypes phenotypes = A and B IBIB IAIA i i

68 67 Genetic Practice Problems

69 68 Breed the P 1 generation tall (TT) x dwarf (tt) pea plants T T tt

70 69 Solution: T T tt Tt All Tt = tall (heterozygous tall) produces the F 1 generation tall (TT) vs. dwarf (tt) pea plants

71 70 Breed the F 1 generation tall (Tt) vs. tall (Tt) pea plants T t Tt

72 71 Solution: TT Tt tt T t Tt produces the F 2 generation 1/4 (25%) = TT 1/2 (50%) = Tt 1/4 (25%) = tt 1:2:1 genotype 3:1 phenotype 3:1 phenotype tall (Tt) x tall (Tt) pea plants

73 72 More Exceptions To Mendelian Genetics

74 73 Sex-linked Traits Traits (genes) located on the sex chromosomes Sex chromosomes are X and Y XX genotype for females XY genotype for males Many sex-linked traits carried on X chromosome

75 74 Sex Linked Traits The genes for these traits are on the X chromosome, because boys only receive one X chromosome they are more likely to inherit disorders passed to them from their mother who would be a carrier. Hemophilia and Colorblindness are sex linked traits, the punnet square below shows how a woman who is a carrier passes the trait to her son, but not her daughters.

76 75

77 76 Sex-linked Traits Sex Chromosomes XX chromosome - femaleXy chromosome - male fruit fly eye color Example: Eye color in fruit flies

78 77 Sex-linked Trait Problem Example: Eye color in fruit flies (red-eyed male) x (white-eyed female) X R Y x X r X r Remember: the Y chromosome in males does not carry traits. RR = red eyed Rr = red eyed rr = white eyed XY = male XX = female XRXR XrXr XrXr Y

79 78 Sex-linked Trait Solution: X R X r X r Y X R X r X r Y 50% red eyed female 50% white eyed male XRXR XrXr XrXr Y

80 79 Female Carriers

81 80 Multiple Allele Traits Traits that are controlled by more than two alleles. Blood type in humans is controlled by three alleles: A, B, and O PhenotypeGenotype AAA or AO BBB or BO ABAB only OOO only

82 81 Examples of Blood Type Crosses

83 82 Blood can only be transferred to a body of a person who's immune system will "recognize" the blood. A and B are antigens on the blood that will be recognized. If the antigen is unfamiliar to the body, your body will attack and destroy the transfused blood as if it were a hostile invader (which can cause death). Blood Transfusions

84 83 AB is the universal acceptor. A person with AB blood has both the A and B antigens already in the body. A and B blood can be transfused to the person (as well as O) and the body will recognize it and not attack.

85 84 O is like a blank, it has no antigens. O is called the universal donor. A person can receive a transfusion from O blood without having an immune response

86 85 Polygenic Traits Traits controlled by many genes: hair color, height weight, intelligence While one gene may make only one protein, the effects of those proteins usually interact (for example widow's peak may be masked by expression of the baldness gene).

87 86 Polygenic Traits Novel phenotypes often result from the interactions of two genes, as in the case of the comb in chickens. – The single comb is produced only by the rrpp genotype. – Rose comb (b) results from R_pp. (_ can be either R or r). – Pea comb (c) results from rrP_. – Walnut comb, a novel phenotype, is produced when the genotype has at least one dominant of each gene (R_P_).

88 87 Chicken Combs

89 88 Sex Influenced Traits Traits are influenced by the environment. Pattern baldness affects men because testosterone activates the gene.

90 89 Environmentally Influenced Traits Siamese cats have dark ears and feet due to the temperature at birth. Height in humans is influenced by the environment (diet).

91 90 http://www.gwc.maricopa.edu/ class/bio202/cyberheart/ anthrt.htm


Download ppt "1 Mendelelian Genetics 2 Gregor Mendel (1822-1884) Responsible for the Laws governing Inheritance of Traits."

Similar presentations


Ads by Google