Download presentation
Presentation is loading. Please wait.
Published byDominic Hicks Modified over 8 years ago
1
Physics Chapter 9: Fluid Mechanics
2
Fluids Fluids Definition - Materials that Flow Liquids Definite Volume Non-Compressible Gasses No Definite Volume Compressible
3
Fluids Mass Density Mass / Unit Volume Symbol (rho) m = mass (kg) V = volume (m 3 )
4
Fluids Mass Density Density of Water (@ 4 0 C) 1.0 g/cm 3 = 1.0 g/cc = 1.0 g/mL 1.0L = 1x10 -3 m 3
5
Fluids Mass Density Density of Other Materials Page 319 Table 9-1 Gasses Liquids Solids
6
Fluids Archimedes’ Principle Any Fluid Applies a Buoyant Force to an Object that is partially or Completely Immersed in it; The Magnitude of the Buoyant Force Equals the Weight of the Fluid that the Object Displaces.
7
Fluids Archimedes’ Principle Apparent Weight The Weight of an Object You “Feel” The Net Force Acting on a Submerged or Partially Submerged Object
8
Fluids Archimedes’ Principle
9
Fluids Archimedes’ Principle If F g > F buoyant the Object Will Sink If F g < F buoyant the Object Will Float If F g = F buoyant the Object Will be Neutrally Buoyant
10
Fluids Archimedes’ Principle For a Floating Object the Buoyant Force is Equal to the Weight of the Object
11
Fluids Archimedes’ Principle Object Volume and Gravity are Constant
12
Fluids Pressure Force Acting Perpendicular to a Surface Divided by the Area of the Surface Units – N/m 2 = Pascal (Pa)
13
Fluids Pressure Pascal 1Pa = 1N/m 2 Very Small Quantity ATM 1.013x10 5 Pa = 1.013 bar = 14.70 lb/in 2
14
Fluids Pascal’s Principle Any Change in the Pressure Applied to a Completely Enclosed Fluid Is Transmitted Undiminished to All Parts of the Fluid and the Enclosing Walls.
15
Fluids Pascal’s Principle
16
Fluids Pressure and Depth Fluid, at a Given Depth, has Pressure Applied to It by the Fluid Above It
17
Fluids Pressure and Depth
18
Fluids Pressure and Depth
19
Fluids Pressure and Depth
20
Fluids Pressure and Depth
21
Fluids Pressure and Depth Air is a Fluid Atmospheric Pressure Works by the Same Principles
22
Fluids Problem Neutron stars consist only of neutrons and have very high densities. A typical mass and radius of a neutron star is 2.7x10 28 kg and 1.2x10 3 m. What is the density of this star?
23
Fluids Solution m = 2.7x10 28 kg r = 1.2x10 3 m
24
Fluids Problem A paperweight weighs 6.9N in air, but when immersed in water weighs 4.3N. What is the volume of the paperweight?
25
Fluids Solution W = 6.9N W apparent = 4.3N
26
Fluids Problem In a car lift the output plunger has a radius of 9.0cm. The weight of the plunger and the car is 21,600N. What is the gage pressure of the hydraulic oil used in operating the lift?
27
Fluids Solution F = 2.16x10 4 N r = 9.0cm = 0.09m
28
Fluids Problem A dentist chair with a patient in it weighs 2100N. The output plunger of a hydraulic system begins to lift the chair when the dentist’s foot applies a force of 55N to the input piston. Neglect any height difference between the plunger and the piston. What is the ratio of the radius of the plunger to the radius of the piston?
29
Fluids Solution F 1 = 55N F 2 = 2100N
30
Fluids Problem A spring (k=1600N/m) is attached to the input piston of a hydraulic chamber and a rock with a mass of 40.0kg rests on the output plunger. The piston and the plunger are nearly at the same height and each has negligible mass. By how much is the spring compressed from its unstrained position?
31
Fluids Solution k = 1.6x10 3 N/m A 2 = 15cm 2 A 1 = 65cm 2 m r = 40.0kg
32
Fluids Homework Pages 343 – 344 Problems 8 (a, 6.3x10 3 kg/m 3 b, 9.2x10 2 kg/m 3 ) 16 (1.9x10 4 N) 18 (14N Downward) 19 (a, 2.6x10 6 Pa b, 1.8x10 5 N)
33
Fluids Fluids in Motion Fluid Flow Laminar Flow (Streamline Flow) Constant Flow of Fluid Particles All Particles have Same Velocity Turbulent Flow Velocity Changes with Time Due to Obstructions or Openings
34
Fluids Fluids in Motion Fluid Flow Turbulent Flow Eddy Currents Direction of Flow
35
Fluids Fluids in Motion Fluid Flow Compressible Gasses Incompressible Liquids Some Gasses Under Specific Circumstances
36
Fluids Fluids in Motion Viscosity (Resistance to Flow) Viscous Inefficient Use of Energy Non-viscous Efficient Use of Energy
37
Fluids Fluids in Motion Fluid Flow Ideal Fluid Incompressible Fluid with Zero Viscosity
38
Fluids Fluids in Motion Equation of Continuity Initial Flow Rate = Final Flow Rate
39
Fluids Fluids in Motion Equation of Continuity Mass Flow Rate
40
Fluids Fluids in Motion Equation of Continuity Mass Flow Rate Assuming Same Density and Time
41
Fluids Fluids in Motion
42
Fluids Fluids in Motion Bernoulli’s Principle The Pressure in a Fluid Decreases as the Fluid’s Velocity Increases
43
Fluids Bernoulli’s Equation Pressure Drops with Decreased Area
44
Fluids Bernoulli’s Equation Pressure Drops with Increased Height
45
Fluids Bernoulli’s Equation In the steady flow of a nonviscous, incompressible fluid of density , the pressure P, the fluid speed v, and the elevation y at any two points are related.
46
Fluids Bernoulli’s Equation For Static Fluids
47
Fluids Bernoulli’s Equation For Moving Fluids with No Change in Elevation
48
Fluids Fluids in Motion
49
Fluids Gasses The Ideal Gas Law Pressure Volume Number of Particles Boltzmann’s Constant (k B ) = 1.38x10 -23 J/K Temperature (in Kelvin)
50
Fluids Gasses The Ideal Gas Law If Number of Particles is Constant
51
Fluids Problem A dump truck traveling at 27m/s has its load covered by a tarp. By how much does the pressure inside the cargo area beneath the tarp exceed the outside pressure?
52
Fluids Solution air = 1.29kg/m 3 v 1 = 0m/s v 2 = 27m/s
53
Fluids Problem Laura can fill a bucket from a water hose in 30.0s. If she covers up part of the hose’s opening with her thumb the velocity of the water doubles. How long will it take Laura to fill the bucket now?
54
Fluids Solution t 1 = 30.0s v 2 = 2v 1
55
Fluids Problem The water supply of a building is fed through a main pipe that is 6.0cm in diameter. A 2.0cm diameter faucet tap is positioned 2.00m above the main pipe and can fill a 2.5x10 -2 m 3 container in 30.0s. What is the velocity that the water leaves the faucet?
56
Fluids Solution r 1 = 3.0cm r 2 = 1.0cm h 2 -h 1 = 2.00m = 1000kg/m 3 t = 30.0s V = 0.025m 3
57
Fluids Problem The water supply of a building is fed through a main pipe that is 6.0cm in diameter. A 2.0cm diameter faucet tap is positioned 2.00m above the main pipe and can fill a 2.5x10 -2 m 3 container in 30.0s. What is the gage pressure in the main pipe (difference in pressure)?
58
Fluids Solution r 1 = 3.0cm r 2 = 1.0cm h 2 -h 1 = 2.00m = 1000kg/m 3 t = 30.0s V = 0.025m 3 v 2 = 2.7m/s
59
Fluids Problem The pressure on an ideal gas is cut in half, resulting in a decrease in temperature to ¾ of the original value. What is the ratio of the final volume to the original volume of the gas?
60
Fluids Solution P 2 = ½ P 1 T 2 = ¾ T 1
61
Fluids Homework Page 344 - 345 Problems 24 (12.6m/s) 29 (474K) 30 (21.3K)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.