Download presentation
Presentation is loading. Please wait.
Published byPaula Dean Modified over 8 years ago
1
(0, 1 ) (1,0) (r,0) (0,r) Circle of radius r
2
(0,1) (1,0) (r,0) (0,r) (cos ,sin ) 1
3
(0,1) (1,0) (r,0) (0,r) (cos ,sin ) 1
4
(0, 1 ) (1,0) (r,0) (0,r) (cos ,sin ) 1 (x, y) = (?,?) r
5
(0, 1 ) (1,0) (r,0) (0,r) cos sin 1 y x r (x, y) = (?,?)
6
(0, 1 ) (1,0) (r,0) (0,r) cos sin 1 y x r These are similar triangles, so the ratio of the sides are equal. (x, y) = (?,?)
7
(1,0) cos sin 1 y x r These are similar triangles, so the ratio of the sides are equal. (x, y) = (?,?) cos 1
8
sin 1 y x r These are similar triangles, so the ratio of the sides are equal. vertical sides hypotenuses y = sin r 1 so y = r sin
9
cos sin 1 y x r These are similar triangles, so the ratio of the sides are equal. vertical sides hypotenuses y = sin r 1 so y = r sin horizontal sides hypotenuses x = cos r 1 so x = r cos
10
(0, 1 ) (1,0) (r,0) (0,r) (cos ,sin ) 1 (x, y) = (r cos , r sin )
11
(0, 1 ) (r,0) (0,r) (x, y) = (r cos , r sin ) r cos r sin
12
(r,0) (0,r) r cos r sin r
13
(r,0) (0,r) r cos r sin r ? ?
14
(r,0) (0,r) r cos r sin r ? ?
15
(r,0) (0,r) r cos r sin r ? ? r cos r sin r ? ? r
16
r cos r sin r ? = h ? = y r These are similar triangles, so the ratio of the sides are equal.
17
r cos r sin r ? = h ? = y r These are similar triangles, so the ratio of the sides are equal. vertical sides horizontal sides y = r sin r r cos = tan so y = r tan
18
r cos r sin r ? = h ? = y r These are similar triangles, so the ratio of the sides are equal. vertical sides horizontal sides y = r sin r r cos = tan so y = r tan h = r r r cos = 1 cos = sec so h = r sec hypotenuses horizontal sides
19
r cos r sin r r sec r tan r
20
(r,0) (0,r) r cos r sin r sec r tan
21
(r,0) (0,r) r cos r sin r sec r tan Likewise: ? ?
22
(r,0) (0,r) r cos r sin r sec r tan Likewise: r tan r csc
23
= 45 o (2,0) (0,2) r = 2 (x, y) = Example:
24
= 45 o (2,0) (0,2) r = 2 (x, y) = (r cos , r sin ) =
25
= 45 o (2,0) (0,2) r = 2 (x, y) = (r cos , r sin ) = (2 cos 45 o,2 sin 45 o ) = ( (2)( 2/2),(2)( 2/2) ) = ( 2, 2)
26
= 120 o (4,0) (0,4) (x, y) = ? Example:
27
= 120 o (4,0) (0,4) (x, y) = (r cos , r sin ) = r = 60 o
28
= 120 o (4,0) (0,4) (x, y) = (r cos , r sin ) = ( (4)( - 1/2), (4)( 3/2) ) ( - 2, 2 3) r = 60 o
29
= 210 o (3,0) (0,3) (x, y) = ? Example:
30
(3,0) (0,3) (x, y) = ? r = 30 o Example: = 210 o
31
(3,0) (0,3) (x, y) = (r cos , r sin ) = (3(-cos 30 o ), 3(-sin 30 o )) = (-3 3 / 2, - 3/ 2 ) r = 30 o Example: = 210 o (x, y) = ?
32
(3,0) (0,3) (x, y) = (-3 3 / 2, - 3/ 2 ) r = 30 o Example: = 210 o
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.