Download presentation
Presentation is loading. Please wait.
Published byColeen Hunter Modified over 8 years ago
2
Recent Progress about kHz QPO and Spin in LMXB and their implications C.M. Zhang, H.X. Yin, Y. Yan, L.M. Song, F. Zhang National Astronomical Observatories, Beijing High Energy Physics Institute, Beijing Shandong University, Weihai High energy astrophysics Workshop, Shanghai, April 25-28, 2008
3
OUTLINE OF TALK QPO in LMXB – kHz QPOs Spins of accreting millisecond X-ray Pulsar Spin and kHz QPO relations BH QPOs, Miscs QPO, Mechanisms Implications and Conclusions
4
Spin and kHz QPO by RXTE 1996—2008 RXTE: NASA: Swank 1995 kHz QPOs (31) van der Klis 2006; Belloni, Mendez & Homan 2005/2007 max=1329 Hz: van Straaten, Ford, van der Klis, Mendez, Kaaret, 2000 Spin frequency - Burst oscillation (24); 45-1122? Hz, Wijnands 2005; Strohmayer & Bildsten 2006; Kaaret 2007 ?; Lamb & Boutloukos 2007; Yin, Zhang, Zhao et al 2007 Max=619 Hz ? Radio MSP 716 Hz (Hessels et al. 2006) HBO, ~15-70 Hz, van der Klis 2006 NBO, ~5-20 Hz, van der Klis 2006; Yu & van der Klis 2003 BH QPO, ~100 Hz, McClintock & Remillard 2006
5
kHz QPOs in Atoll and Z Sources -- CCD Accretion rate direction ~Eddington Accretion ~1% Eddington Accretion
6
Typical twin kHz QPOs ( 22/31 ) Typically: Twin KHz QPO Upper ν 2 ~ 1000 (Hz) Lower ν 1 ~ 700 (Hz) Twin 22/31 sources ; ~ 310
7
QPO v.s. Accretion rate relation SCO X-1, Van der Klis, 2006 QPO frequency increases with the accretion rate kHz QPO profile; e.g. Mendez 2005 Barret, Olive, Miller 2007
8
Accreting X-ray millisecond pulsar --- SAX J1808.4-3658 (8 AXMPs); 401 Hz (2.49 ms) Wijnands and van der Klis, 1998 Nat; Wijnands et al 2003 Nat
9
Type-I X-ray Burst frequency 17 burst sources, van der Klis 2006; Strohmayer and Bildsten 2006 4U1728-34, 362.5 Hz --- 363.9 Hz, ~1Hz frequency drift
10
Table: sources with twin kHz QPO/spin 8 No Spin found in Z-sources ! Why ? Spins see: Muno 2001, Chakrabarty 2004; Wijnands 2005; Strohmayer & Bildsten 2006; Belloni, Mendez & Homan 2005/2007; Lamb & Boutlokos 2007; Yin, Zhang, Zhao et al 2007
11
separation of twin kHz QPOs = const? Simple beat model ?: Alpar & Shaham 1985; Strohmayer et al 1996; Miller, Lamb & Psaltis 1998; Improved beat model needed, e.g. Lamb 2001; Lamb & Miller 2003
12
Twin kHz QPO relation Non-linear relation by Psaltis et al. 1998; Zhang et al. 2006a for 290 pairs ν 1 = ~700. (Hz)(ν 2 /1000Hz) b b ~ 1.6 Atoll Source, e.g. 4U1728 b ~ 1.8 Z Source, e.g. Sco X-1 Cir X-1 difference Ratio 1. separation is constant ? (simple beat) 2. Linear relation: ν2 = A ν1 +B 3.Ratio is a constant : 3:2 ? Abramowicz, et al. 2003 Cir X-1 : Boutloukos, van der Klis, Altamirano, Klein-Wolt, Wijnands,,Jonker, Fender: 2006
13
AMXP: special cases of 1.5 shift SAXJ1808.4-365; XTE J1807-294 SAXJ1808.4-365: Wijnands & van der Klis 1998; Chakrabarty, Morgan, Muno, Galloway,.Wijnands, Klis, Markwardt 2003 XTE1807-294, Linares et al 2006; Zhang et al 2006b
14
SAXJ 1808.4-3658 , Twin kHz QPOs : ~700 Hz, ~ 500 Hz ; Burst/spin: 401 Hz Wijnands, van der Klis, 1998; Wijnands, van der Klis, Homan, Chakrabarty, Markwardt, Morgan, 2003 XTE J 1807-294, twin kHz QPO sep ~ 200 Hz, spin=191 Hz, Linares, van der Klis, Altamilano, Markwardt 2005 ; Zhang et al, 2006b kHz QPO separation and spin relation Slow rotator (XTE 1807); separation/spin ~ 1 Fast rotator (SAX 1808); separation/spin ~ 0.5 Linares, van der Klis, Wijnands 2007 Lamb & Boutloukos 2007
15
Table 1. TWELVE sources with the twin kHz QPOs and spin frequencies. Millisecond pulsars sep spin ratio XTE J1807-294 79-247 191 0.94-1.29 SAX J1808.4-3658 195 401 0.49 Atoll sources 4U 1608-52 224-327 619 0.36-0.53 4U 1636-53 217-329 581 0.37-0.57 4U 1702-43 333 330 1.01 4U 1728-34 271-359 363 0.75-0.99 KS 1731-260 266 524 0.51 4U 1915-05 290-353 270 1.07-1.31 IGR J17191 330 294 1.12 SAX J1750.8-29 317 601 0.53 4U 0614+09 238-382 415 0.57-0.92 Aql X-1 278-280 550 0.51-0.51 data: van der Klis 2006, Belloni, Mendez & Homan 2005, 2007, Zhang et al. 2006a, Yin, Zhang et al. 2007
16
Ratio of kHz QPO separation to Spin for 12 sources ratio
17
Spin Frequency Distribution 24 Spin sources Yin, Zhang, Zhao et al 2007 12 spin + kHz QPO sources Spin frequency: Max: 1122 Hz, Kaaret et al 2007 ? Min: 45 Hz Villarreal & Strohmayer 2004 spin
18
Lower of twin kHz QPO frequency > 1.1 spin frequency
19
SAJ 1808, XTE J 1807; 1.5 shift
20
kHz QPO & spin relation
22
Twin kHz QPO distribution
23
Twin kHz QPO distribution; ratio~1.5=3:2 Ave.
24
Magnetic filed – LMXB, Atoll & Z source Spin > corotation radius ~40 km > ~10 8 G Atoll, Z source has spin detected ? kHz QPO distribution for Atoll/Z > similar magnetosphere B ~ 10 9 G (Mdot-Ed) 1/2 Z source has a stronger field than Atoll’s B ~ 10 9 G (Z) ; B ~ 10 8 G (Atoll) e.g. Zhang & Kojima 2006; Burderi et al 1996, 1997; Konar & Bhatcharya 2003 Psaltis, Lamb & Miller 1998; Lamb & Yu 2006; Hasinger & Kils 1986
25
Maximum spin: gravitational wave ? NS break up frequency > 1000 Hz Max ~ 700 Hz (1122 Hz ?) GW ?
26
Radio Pulsar: Magnetic field--period diagram Radio PSR: 1850 + magnetar: 5SGR+11AXP MSP: ~200 BPSR: 130, recycled (2) 716 Hz; ~10^8 G; why not 10^7 G ? (1) Why B-P ? B evolves ? Recycled ? LMXB
27
Low frequency QPO---kHz QPO relation Belloni, Psaltis & Klis 2002 Empirical Relation ν HBO = 50. (Hz)(ν 2 /1000Hz) 1.9-2.0 ν HBO = 42. (Hz) (ν 1 /500Hz) 0.95-1.05 ν qpo = 10. (Hz) (ν 1 /500Hz) Low frequency QPO< 100 Hz FBO/NBO = 6-20 (Hz) HBO = 15-70 (Hz) ν 1 = 700. (Hz)(ν 2 /1000Hz) 1.6-2.0
28
Low-high frequency QPO relation in WD/NS/BH Titarchuk & Wood 2002; Mauche 2002; Warner & Woudt 2004; Warner 2006 + 27 CVs, 5 magnitude orders in QPO frequency Black holes White dwarfs, Cvs Neutron stars ? Zhang et al 2007, PASP Similarity in WD/NS/BH ?
29
Parallel Line Phenomenon kHz QPO - luminosity relation Similarity/Homogeneous ? Among the different sources, same source at the different time
30
kHz QPO v.s. Count rate kHz QPO corresponds to the position in CCD, to accretion rate Mdot; QPO ~ Mdot
31
Black Hole High Frequency QPOs HFQPO: 40-450 (Hz) Frequency stable with Luminosity Twin QPO relation 3:2 (4 sources) Frequency-Mass relation: 1/M Jets like Galactic BHs ~10 Msun Different from: NS/LMXB kHz QPOs (McClintock & Remillard 2003;2006) Frequency at ISCO Schwarzschild ν k = (1/2π)(GM/r 3 ) 1/2 = (c/2πr) (R s /2r) 1/2 ν k ( ISCO ) = 2.2 (kHz) (M/Mסּ) -1 GRO J1655-40, XTE J1550-564 XTE 1650-5000, 4U1630-47 XTE 1859-226, H 1743-322 GRS 1915+105, 7 microquasars van der Klis 2006 3:2 mechanism: Abramowicz et al 2003 Wang DX et al. 2003; 2006 Measuring BH spin by QPO, (Kerr SP): Cui et al. 1998; Zhang SN et al 1997 TorokTorok, Abramowicz, 2006 Abramowicz
32
High frequency pair QPO BH: ~3:2 --- NS: varied near 3:2
33
Microquasar Jet formation condition Massi & Bernado 2008, P(mag)<P(flow) 1) Alfven radius ~ NS radius, Z sources: Cir X-1, Sco X-1 twin kHz QPOs and jets, no spins detected 2) Alfven radius ~ ISCO 7 microquasars: jets, 3:2 twin QPO ratios (40-450 Hz)
34
Theoretical Models Beat Model for KHz QPO ν 2 = ν kepler ν 1 = ν kepler - ν spin ∆ν = ν 2 - ν 1 = ν spin Alpar & Shaham 1985; Miller, Lamb, Psaltis 1998; Strohmayer et al 1996; Lamb & Miller 2001; 2003 …Constant
35
Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, ν 2 = ν kepler ν 1 = ν precession = ν 2 [1 – (1 – 3Rs/r) 1/2 ] ∆ν = ν 2 - ν 1 is not constant ISCO Saturation Relativistic precession model by Stella & Vietri 1999
36
Theoretical model Stella and Vietrie, 1999, Precession model Problems: = 3 M ⊙. For SAJ 1808 40 NS ~ 1.4 solar mass
37
Alfven wave oscillation MODEL Zhang 2004 AA; Li & Zhang 2005 ApJ; Keplerian Orbital frequency MHD Alfven wave Oscillation in the orbit ν 2 = 1850 (Hz) A X 3/2 ν 1 = ν 2 X (1- (1-X) 1/2 ) 1/2 A=m 1/2 /R 6 3/2; X=R/r, m: Ns mass in solar mass R 6 is NS radius in 10^6 cm
38
Cir X-1
39
Constrains star mass radius by kHz QPOs Inner boundary to emit kHz QPO: ISCO, R > MAX M, R M<2.2 M ⊙ (1kHz/freq) R<19.5 km (1kHz/freq) M/R 3 relation known by model for twin kHz QPOs SAXJ 1808.4: M/R 3 by Burderi & King 1998
40
Mass-Radius relations Apparent Radius: R ∞ =R/(1-R s /R) 1/2 Haensel 2001 Gravitational redshift: z=(1-R s /R) -1/2 -1 Cottam et al 2003, z=0.35 Mass density: M/R 3 (by kHz QPOs) Zhang 2004 1E1207.4-5209, Aql X-1 and EXO 0748-676 Rs=2GM: Schwarzschild radius Measuring NS Mass & Radius by kHz QPO, gravitational redshift and apparent radius
41
Measuring NS Mass-Radius by kHz QPO, gravitational redshift and apparent radius CN1/CN2: normal neutron matter, CS1/CS2: quark star CPC: Bose-Einstein condensate of pions Zhang, et al. 2007 MNRAS AqlX-1 , EXO 0748-676 Samples
42
Estimating Magnetic filed - LMXB Spin > corotation radius ~40 km > ~10 8 G Spin variation: torque > ~10 8 G Wijnands & van der Klis 1998; Burderi, de Salvo.. 2006; kHz QPO distribution for Atoll/Z > similar magnetosphere ~10 8 G (Mdot) 1/2 Zhang & Kojim 2006; Burderi et al 1996, 1997; White & W Zhang 1998 Z source has a stronger field than Atoll’s
43
Estimating NS spin by spin-kHz QPO relation Spin frequency is less than the minimum upper-frequency of twin kHz QPOs
44
Conclusions Spin - kHz QPO relation (a) slow/fast rotator ½-1.0 ? (b) occur kHz QPO – Spin ? Predicts Z spin (c) Av. kHz QPO – spin relation Constraints on kHz QPOs Model twin kHz QPOs – nonlinear relation NS magnetic implications: Z/Atoll Low-high QPO ratio = 12 - 15 similarity in NS/BH/WD; GR is a role ? Thanks many friends here for thoughtful discussions, which arouses my interest of understanding spins and kHz QPOs.
45
QPO Frequency vs. Flux MagnifiedFull range
46
Fastest Pulsar XTE J1739-285 1122 Hz Mass & Radius Kaaret et al. 2007 Quark Star ? Xu, MNRAS, 2005 Xu, Qiao, Wang, CPL, 2003 Li et al 1999 PRL Cheng et al. 1998, Sci Sub-millisecond PSR : high mass, Burderi et al. 2003
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.