Download presentation
Presentation is loading. Please wait.
Published byOsborne Flowers Modified over 8 years ago
1
Rounding-based Moves for Metric Labeling M. Pawan Kumar École Centrale Paris INRIA Saclay, Île-de-France
2
Metric Labeling Variables V = { V 1, V 2, …, V n }
3
Metric Labeling Variables V = { V 1, V 2, …, V n }
4
Metric Labeling VaVa VbVb Labels L = { l 1, l 2, …, l h } Variables V = { V 1, V 2, …, V n } Labeling f: { 1, 2, …, n} {1, 2, …, h} E(f) = Σ a θ a (f(a)) + Σ (a,b) w ab d(f(a),f(b)) min f θ a (f(a)) θ b (f(b)) w ab d(f(a),f(b)) w ab ≥ 0 d is metric
5
Metric Labeling VaVa VbVb E(f) min f NP hard = Σ a θ a (f(a)) + Σ (a,b) w ab d(f(a),f(b)) Low-level vision applications
6
Outline Approximate Algorithms Comparison Rounding-based Moves
8
Boykov, Veksler and Zabih Kleinberg and Tardos Efficiency Accuracy Move-Making Algorithms Convex Relaxations
9
Kolmogorov and Boykov Move-Making Algorithms Convex Relaxations Chekuri, Khanna, Naor and Zosin Efficiency Accuracy
10
Outline Approximate Algorithms –Move-Making Algorithms –Linear Programming Relaxation Comparison Rounding-based Moves
11
Move-Making Algorithms Space of All Labelings f
12
Expansion Algorithm Variables take label l α or retain current label Slide courtesy Pushmeet Kohli Boykov, Veksler and Zabih, 2001
13
Expansion Algorithm Sky House Tree Ground Initialize with TreeStatus:Expand GroundExpand HouseExpand Sky Slide courtesy Pushmeet Kohli Variables take label l α or retain current label Boykov, Veksler and Zabih, 2001
14
Multiplicative Bounds f*: Optimal Labelingf: Estimated Labeling Σ a θ a (f(a)) + Σ (a,b) w ab d(f(a),f(b)) Σ a θ a (f*(a)) + Σ (a,b) w ab d(f*(a),f*(b)) ≥
15
Multiplicative Bounds f*: Optimal Labelingf: Estimated Labeling ≤ B Σ a θ a (f(a)) + Σ (a,b) w ab d(f(a),f(b)) Σ a θ a (f*(a)) + Σ (a,b) w ab d(f*(a),f*(b)) Ask me the obvious question
16
Outline Approximate Algorithms –Move-Making Algorithms –Linear Programming Relaxation Comparison Rounding-based Moves
17
Integer Linear Program Number of facets grows exponentially in problem size Minimize a linear function over a set of feasible solutions Indicator x a (i) {0,1} for each variable V a and label l i Indicator x ab (i,k) {0,1} for each neighbor (V a,V b ) and labels l i, l k
18
Linear Programming Relaxation Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003 Indicator x a (i) {0,1} for each variable V a and label l i Indicator x ab (i,k) {0,1} for each neighbor (V a,V b ) and labels l i, l k
19
Linear Programming Relaxation Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003 Indicator x a (i) [0,1] for each variable V a and label l i Indicator x ab (i,k) [0,1] for each neighbor (V a,V b ) and labels l i, l k
20
Approximation Factor x*: LP Optimal Solutionx: Estimated Integral Solution Σ a Σ i θ a (i)x a (i) + Σ (a,b) Σ (i,k) w ab d(i,k)x ab (i,k) ≥ Σ a Σ i θ a (i)x* a (i) + Σ (a,b) Σ (i,k) w ab d(i,k)x* ab (i,k)
21
Approximation Factor x*: LP Optimal Solutionx: Estimated Integral Solution Σ a Σ i θ a (i)x a (i) + Σ (a,b) Σ (i,k) w ab d(i,k)x ab (i,k) ≤ Σ a Σ i θ a (i)x* a (i) + Σ (a,b) Σ (i,k) w ab d(i,k)x* ab (i,k) F
22
Outline Approximate Algorithms Comparison Rounding-based Moves
23
Theoretical Guarantees ExpansionLP Uniform22 Metric2MO(log h) Truncated Linear 2M2 + √2 Truncated Quadratic 2MO(√M) M = ratio of maximum and minimum non-zero distance
24
Outline Approximate Algorithms Comparison Rounding-based Moves –Complete Rounding –Interval Rounding –Hierarchical Rounding
25
Complete Rounding Treat x a (i) [0,1] as probability that f(a) = i Cumulative probability y a (i) = Σ j≤i x a (j) 0y a (1) y a (2) y a (h) = 1 y a (k) y a (i) Generate a random number r (0,1] Assign the label next to r r
26
Example 0y a (1) y a (4) y a (3) y a (2) 0.25 0.5 0.75 1.0 0 y b (1) y b (4) y b (3) y b (2) 0.70.80.91.0 0 y c (1) y c (4) y c (3) y c (2) 0.1 0.20.3 1.0 r r r
27
Complete Move A move that mimics complete rounding Considers all random variables and labels Assigns labels in one iteration
28
Key Observation If d is submodular d(i,k) + d(i+1,k+1) ≤ d(i,k+1) + d(i+1,k), for all i, k Schlesinger and Flach, 2003 energy can be minimized via minimum cut
29
Complete Move VaVa VbVb θ ab (i,k) = w ab d(i,k)NP-hard
30
Complete Move VaVa VbVb θ ab (i,k) = w ab d’(i,k) d’(i,k) ≥ d(i,k) d’ is submodular
31
Complete Move VaVa VbVb θ ab (i,k) = w ab d’(i,k) d’(i,k) ≥ d(i,k) d’ is submodular
32
Complete Move New problem can be solved using minimum cut Same multiplicative bound as complete rounding Multiplicative bound is tight
33
Outline Approximate Algorithms Comparison Rounding-based Moves –Complete Rounding –Interval Rounding –Hierarchical Rounding
34
Interval Rounding Treat x a (i) [0,1] as probability that f(a) = i Cumulative probability y a (i) = Σ j≤i x a (j) 0y a (1) y a (2) y a (h) = 1 y a (k) y a (i) Choose an interval of length h’
35
Interval Rounding Treat x a (i) [0,1] as probability that f(a) = i Cumulative probability y a (i) = Σ j≤i x a (j) r Generate a random number r (0,1] Assign the label next to r if it is within the interval y a (k)-y a (i) 0 Choose an interval of length h’ REPEAT
36
Example 0y a (1) y a (4) y a (3) y a (2) 0.25 0.5 0.75 1.0 0 y b (1) y b (4) y b (3) y b (2) 0.70.80.91.0 0 y c (1) y c (4) y c (3) y c (2) 0.1 0.20.3 1.0
37
Example 0y a (1) y a (2) 0.25 0.5 0 y b (1) y b (2) 0.70.8 0 y c (1) y c (2) 0.1 0.2 r r r
38
Example 0y a (1) y a (4) y a (3) y a (2) 0.25 0.5 0.75 1.0 0 y b (1) y b (4) y b (3) y b (2) 0.70.80.91.0 0 y c (1) y c (4) y c (3) y c (2) 0.1 0.20.3 1.0
39
Example 0 y c (1) y c (4) y c (3) y c (2) 0.1 0.20.3 1.0
40
Example 0 y c (3) y c (2) 0.10.2 r -y c (1)
41
Example 0y a (1) y a (4) y a (3) y a (2) 0.25 0.5 0.75 1.0 0 y b (1) y b (4) y b (3) y b (2) 0.70.80.91.0 0 y c (1) y c (4) y c (3) y c (2) 0.1 0.20.3 1.0
42
Interval Move A move that mimics interval rounding Considers all variables and an interval of labels Changes labeling iteratively
43
Key Observation If d is submodular d(i,k) + d(i+1,k+1) ≤ d(i,k+1) + d(i+1,k), for all i, k Schlesinger and Flach, 2003 energy can be minimized via minimum cut
44
Interval Move VaVa VbVb θ ab (i,k) = w ab d(i,k) Choose an interval of length h’
45
Interval Move VaVa VbVb θ ab (i,k) = w ab d(i,k) Choose an interval of length h’ Add the current labels
46
Interval Move VaVa VbVb θ ab (i,k) = w ab d’(i,k) Choose an interval of length h’ Add the current labels d’(i,k) ≥ d(i,k) d’ is submodular Solve to update labels Repeat until convergence
47
Interval Move Each problem can be solved using minimum cut Same multiplicative bound as interval rounding Multiplicative bound is tight
48
Boykov, Veksler and Zabih Kleinberg and Tardos Length of interval = 1 Move-Making Algorithms Convex Relaxations
49
Boykov, Veksler and Zabih Chekuri, Khanna, Naor and Zosin Length of interval = 1 Optimal interval length Move-Making Algorithms Convex Relaxations
50
Theoretical Guarantees MovesLP Uniform22 Metric2MO(log h) Truncated Linear 2 + √2 Truncated Quadratic O(√M) M = ratio of maximum and minimum non-zero distance
51
Outline Approximate Algorithms Comparison Rounding-based Moves –Complete Rounding –Interval Rounding –Hierarchical Rounding
52
Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Hierarchical clustering of labels (e.g. r-HST metrics)
53
Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Assign variables to labels L 1, L 2 or L 3 Move down the hierarchy until the leaf level
54
Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Assign variables to labels l 1, l 2 or l 3
55
Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Assign variables to labels l 4, l 5 or l 6
56
Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Assign variables to labels l 7, l 8 or l 9
57
Hierarchical Move L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Hierarchical clustering of labels (e.g. r-HST metrics)
58
Hierarchical Move L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Obtain labeling f 1 restricted to labels {l 1,l 2,l 3 }
59
Hierarchical Move L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Obtain labeling f 2 restricted to labels {l 4,l 5,l 6 }
60
Hierarchical Move L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Obtain labeling f 3 restricted to labels {l 7,l 8,l 9 }
61
Hierarchical Move L1L1 L2L2 L3L3 VaVa VbVb f 1 (a) f 2 (a) f 3 (a) Move up the hierarchy until we reach the root f 1 (b) f 2 (b) f 3 (b)
62
Hierarchical Move Each problem can be solved using minimum cut Same multiplicative bound as hierarchical rounding Multiplicative bound is tight
63
Boykov, Veksler and Zabih Kleinberg and Tardos Flat hierarchy r-HST hierarchy Move-Making Algorithms Convex Relaxations
64
Theoretical Guarantees MovesLP Uniform22 MetricO(log h) Truncated Linear 2 + √2 Truncated Quadratic O(√M) M = ratio of maximum and minimum non-zero distance
65
Questions? http://cvn.ecp.fr/personnel/pawan pawan.kumar@ecp.fr
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.