Download presentation
Presentation is loading. Please wait.
Published byJanel Griffith Modified over 8 years ago
1
Room-temperature Burst-mode GHz and THz Pulse Rate Photoinjector for Future Light Sources Yen-Chieh Huang * Chia-Hsiang Chen, Kuan-Yan Huang, Fu-Han Chao HOPE Laboratory, Institute of Photonics Technologies National Tsinghua University (NTHU), Hsinchu, Taiwan AFAD 2014 and ACAS Workshop on Future Light Sources, Jan. 14-16, 2014 (2E-33) *ychuang@ee.nthu.edu.tw
2
OUTLINE 1.Motivations – high average power, electron bunching 2.Burst-mode GHz photoinjector high- average power FEL 3.Burst-mode THz photoinjector superradiant THz FEL 4.Dielectric Laser Accelerator Mini-XFEL 5.Conclusions
3
photoinjector velocity bunching IDEA GHz ~ THz Bunching Frequency Multiplication macropulse Compressed macropulse Magnetic bunching PHz
5
Burst-mode GHz Photoinjector RF pulse Electron micro-pulse ~s~s 10-100 ms 10-100 Hz > kHz 300 mJ pump @ 532 nm Multi-pass amplifier 3 rd -harmonic generator photoinjector High average power FEL/FELO 3.5 ns Pulse Picker PC Ti:sapphire Seed oscillator @ 2.856 GHz (Gigaoptics) GHz gun driver laser
6
Burst-mode THz Photoinjector Pulsed laser beat wave at 1.56 m CW, low-power seed laser at 1.56 m combined from two diode lasers beating at THz frequencies Ti:sapphire laser amplifier + THG UV laser beat wave at 260 nm Mode-locked pump at 1064 nm OPA Optical Parametric Amplifier Second harmonic generator Pulsed laser beat wave at 780 nm SHG
7
pump Dichroic mirror Seed signal signal pump idler Comb-spectrum OPA p0 signal f idler pump f f t Initial beat wave t Final short pulse train (Y. C. Huang et al., CLEO (CWC3), San Jose, USA, May 7, 2008 ) Harmonic generator photocathode Optical parametric amplifier
8
1064 nm pumped two-color OPA (1064-nm pumped OPA, s = ~1.55 m, i = ~3.3 m) EDFA Telecom diode lasers @ 1539 nm, 1545 nm Narrow-line wavelength-tunable laser (ECDL) DFB laser ECDL DFB ECDL Pulsed pump at 1064 nm PPLN OPA Pump Signal Amplified seed signal Self-modulated sidebands 3 THz 0.75 THz Crystal length = 4 cm or 45 l g s-p GVM = 1 ps/cm i-p GVM ~ 0 PPLN = 29.6 m (~ 15 THz tuning range!)
9
9 Photocathode gun Solenoid 50~100 cm Single-pass undulator 50 cm 12 cm THz-pulse-train laser 10 MW power at THz Desktop MW THz Free-electron Laser Yen-Chieh Huang, “Desktop MW Superradiant Free-electron Laser at THz Frequencies,” Applied Physics Letters, 96, 231503 (2010) *Photocathode gun – courtesy of CX Tang of Beijing Tsinghua U and NSRRC
10
10 20% linear taper > 14 MW Tapered undulator Maintaining
11
THz-pulse-train laser 10 MW power at THz Photocathode gun Solenoid 50~100 cm Single-pass undulator 50 cm 12 cm Nrrow line THz THz DFG Narrow-line mW THz wave (Nonlinear material) EDFA Narrow-line wavelength-tunable laser (ECDL) DFB laser ECDL DFB ECDL PPLN OPA PPLN (~ 15 THz tuning range!) Pulsed pump @ 1064 nm PPLN THz DFG 4K Si bolometer wavelength ( m) 170180190200210220230 THz-wave power (a.u.) 0.0 0.5 1.0 wavelength ( m) 420440460480500520540 ~1.5 THz 0.6 THz (Poster)
12
Would the nano-bunches survive during acceleration and propagation (radial acc. and space-charge forces)?
13
Adaptive optics available for laser pulse- front shaping
14
Dielectric laser accelerator (DLA) Dielectric Laser Accelerator 1.Solid state stable 2.Dielectric damage field and thus high acceleration gradient (up to 1-10 GeV/m) 3.Fabrication compatible to semiconductor lithographic patterning technique Huang & Byer (1996)
16
300 MeV/m
17
Dielectric Laser Accelerator (DLA) -bunch length (0.1~1% ) M-pulse length bunch charge energy spread norm. emittance peak current M-pulse rate 1-10 nm or 3.3~33 as ~100 fs10 fC ~ 1 pC ~0.1%10 9 ~10 11 m-rad 0.3~20 kA ~ MHz 300 THz
18
Quantum FEL Con: (1) 1 photon from 1 electron low efficiency (2) Electron recoil induced energy spread << FEL gain bandwidth Define quantum parameter Classic regime ( large enough) Quantum regime Pro: quantum noise added to startup power P , usually small, could assist FEL buildup. Virtual photon (unndulator) To stay in the gain bandwidth FEL gain bandwidth ~ / ~
19
Dielectric Laser Undulators ( u >> laser to operate with large ) T. Plettner, R. L. Byer, Phys. Rev. ST Accel. Beams 11, 030704 (2008). Electron velocity Laser phase velocity G. Travish and R. B. Yoder, Proceedings SPIE 8079, (2011). for E laser ~ 1 GV/m
20
Quantum regime Straight lines are gain-length contours in mm DLA-driven soft-x-ray FEL (laser undulator B u ~ 3 T, r = 1 nm) 50 MeV line u = 20 m Peak current = 5 kA, gain length = 1 mm, ~ 10 -3 Assume rms beam radius = 100 nm To be published in Review of Modern Physics
21
Straight lines are gain-length contours in mm DLA-driven hard-x-ray FEL (laser undulator B u ~ 3 T, r = 1 Å) u = 100 m Quantum regime 300 MeV line Peak current ~ 12 kA, gain length ~ 3 mm Assume rms beam radius = 100 nm gamma
22
Conclusions 1.GHz burst-mode photoinjector: it is a matter of developing a 2.856-GHz burst mode laser amplifier 2. 1-10 THz burst-mode photoinjector: it is a matter of developing a THz-modulated driver laser 3. 100-300 THz burst-mode accelerator: it is matter of developing a dielectric laser accelerator THANK YOU FOR YOUR ATTENTION 4. High rep rate allows high average power, short bunches help buildup of XFEL
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.