Download presentation
Presentation is loading. Please wait.
Published byCuthbert Pearson Modified over 8 years ago
1
HIGHER MATHEMATICS Unit 2 - Outcome 3 Trigonometry
2
cos(60 + 45) = cos(105) = cos(A + B) = cosAcosB - sinAsinB cos60 ⁰ cos45 ⁰ - sin60 ⁰ sin45 ⁰ )( 1 2 x 1 22 () - 33 2 x 1 22 1 2222 - 33 2222 cos(60 + 45) = 1 - 3 2222 x 22 22 2 - 6 4 Using the fact that 105 = 60 + 45. Show that the exact value of cos 105 ⁰ 2 - 6 4 is. Ex.3 Question 1
3
Acute angles X and Y are such that sinX = 8 17 and tanY = 3 4, show that cos(X + Y) =. 36 85 X Y 8 17 3 4 15 5 Ex.3 Question 2
4
cos(X + Y) = cosY = 4 5 cosX = 15 17 sinY = 3 5 sinX = 8 17 cos(X + Y) = cosXcosY - sinXsinY ( 15 17 x ) 4 5 - ( 8 x ) 3 5 cos(X + Y) = 60 85 - 24 85 cos(X + Y) = 36 85 cos(X + Y) = 36 85
5
Acute angles X and Y are such that sinX = 1 55 and tanY = 3. Find the exact value of sin(X – Y). X Y 1 55 3 1 2 10 Ex.3 Question 3
6
cosY = 4 10 cosX = 2 55 sinY = 3 10 sinX = 1 55 sin(X - Y) = sinXcosY - cosXsinY sin(X - Y) = ( 1 55 x ) 1 10 - ( 2 55 x ) 3 sin(X - Y) = 1 50 - 6 sin(X - Y) = -5 50 sin (X – Y) ? 22 = = -5 5252
7
cosx ⁰ cos70 ⁰ – sinx ⁰ sin70 ⁰ = 0.45 Solve the equation cosx ⁰ cos70 ⁰ – sinx ⁰ sin70 ⁰ = 0.45 for 0 ⁰ ≤ x ≤ 360 ⁰. cos (0.45) = 63.3 ⁰ cos(x + 70) = 0.45 C AS T (x + 70) =63.3 ⁰, 296.7 ⁰, 423.3 ⁰, 656.7 ⁰ x = -6.7 ⁰, 226.7 ⁰, 353.3 ⁰, 586.7 ⁰ x = 226.7 ⁰, 353.3 ⁰ Ex.3 Question 4
8
= 2sinAcosA A 1 15 4 Given that 0 ⁰ < A < 90 ⁰, and that tanA = 1 15 find the exact values of sin2A, cos2A and sin4A. cosA = 1515 4 sinA = 1 4 sin2A = 2 15 16 ( 1 4 ) 15 4 ) ( 2 sin2A = 15 8 = Ex.3 Question 5
9
A 1 15 4 Given that 0 ⁰ < A < 90 ⁰, and that tanA = 1 15 find the exact values of sin2A, cos2A and sin4A. cosA = 1515 4 sinA = 1 4 = cos²A – sin²A cos2A = ( 1515 4 ) 2 ) 1 4 ( 2 – 14 16 15 16 1 – cos2A = 7 8 = Ex.3 Question 5 cont.
10
Given that 0 ⁰ < A < 90 ⁰, and that tanA = 1 15 find the exact values of sin2A, cos2A and sin4A. cos2A = 7 8 = sin2A = 15 8 = = 2sin2Acos2A sin4A = ( 15 8 ) 7 8 ) ( 2 sin4A = 14 15 64 7 15 32 = Ex.3 Question 5 cont.
11
sin2x – cosx = 0 Solve the equation sin2x – cosx = 0 for 0 ≤ A ≤ 2. 2sinxcosx – cosx = 0 cosx(2sinx – 1) = 0 sin2x cosx = 0 or sinx = ½ Ex.3 Question 6
12
C AS T A = 90 ⁰ or 270 ⁰ A = 2 33 2 or C AS T A = 30 ⁰ or 150 ⁰ A = 6 55 6 or A =,,, 6 2 55 6 33 2 cosx = 0 sinx = ½
13
(2cosx + 1)(cosx + 3) = 0 cos2x + 7cosx = -4 Solve the equation cos2x + 7cosx = -4 for 0 ≤ x ≤ 2. 2cos²x - 1 + 7cosx + 4 = 0 or cosx = -3 cos2x + 7cosx + 4 = 0 2cos²x + 7cosx + 3 = 0 cosx = ½ - cos2x 2X² + 7X + 3 = 0 (2X + 1)(X + 3) = 0 Ex.3 Question 7
14
C AS T x = 120 ⁰ or 240 ⁰ x = 22 3 44 3 or x =, 22 3 44 3 cosx = -3 cosx = ½ - NO SOLUTIONS cos (½) = 60 ⁰
15
3cos2x + sinx - 2 = 0 Solve the equation 3cos2x + sinx - 2 = 0 for 0 ⁰ ≤ x ≤ 360 ⁰. 3 – 6sin²x + sinx - 2 = 0 3(1 – 2sin²x) + sinx - 2 = 0 -6sin²x + sinx + 1 = 0 cos2x (3sinx + 1)(2sinx - 1) = 0 6sin²x - sinx - 1 = 0 6X² - X - 1 = 0 (3X + 1)(2X - 1) = 0 sinx = - ⅓ or sinx = ½ n Ex.3 Question 8
16
C AS T x = 199.5 ⁰ or 340.5 ⁰ C AS T x = 30 ⁰ or 150 ⁰ x = 30 ⁰, 150 ⁰, 199.5 ⁰, 340.5 ⁰ sinx = - ⅓ sinx = ½ sin ( ⅓ ) = 19.5 ⁰
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.