Presentation is loading. Please wait.

Presentation is loading. Please wait.

Towards Completely Automatic Decoder Synthesis Hsiou-Yuan Liu, Yen-Cheng Chou, Chen- Hsuan Lin, and Jie-Hong Roland Jiang ALCom Lab EE Dept/ Grad. Inst.

Similar presentations


Presentation on theme: "Towards Completely Automatic Decoder Synthesis Hsiou-Yuan Liu, Yen-Cheng Chou, Chen- Hsuan Lin, and Jie-Hong Roland Jiang ALCom Lab EE Dept/ Grad. Inst."— Presentation transcript:

1 Towards Completely Automatic Decoder Synthesis Hsiou-Yuan Liu, Yen-Cheng Chou, Chen- Hsuan Lin, and Jie-Hong Roland Jiang ALCom Lab EE Dept/ Grad. Inst. of Electronics Eng. National Taiwan University

2 2011/11/8ICCAD 20112 Outline  Introduction  Decoder existence checking  Decoder synthesis  Experimental results  Conclusions

3 2011/11/8ICCAD 20113 Introduction Encoder 0,1,1,0,0,… 1,0,1,0,1,… Decoder

4 2011/11/8ICCAD 20114 Introduction  Decoding process under a bounded observation window …, o k, o k+1, o k+2, o k+3, o k+4, o k+5, … EncoderDecoder … ijij i j+1 i j+2 …

5 2011/11/8ICCAD 20115 Introduction  Example OutputInput 00...00... or 11… 01…01… or 10… 10…00… or 11… 11…01… or 10… 1/1 0/00/1 1/0 q0q0 q1q1 1/1 0/01/0 0/1 q0q0 q1q1 OutputInput 00...?0… 01…?1… 10…?1… 11…?0…

6 2011/11/8ICCAD 20116 Introduction  Encoding/decoding scheme plays key roles in various applications, including Communication, Signal processing, Cryptography, …  Designing a decoder can be more difficult than designing an encoder  Automatic decoder synthesis helps a designer effectively and correctly implement his/her system

7 2011/11/8ICCAD 20117 Introduction  Basic assumptions: Encoder can be sequential  Combinational encoder is a special case  Can be decoded with observation window of size 1  Steady state behavior is of main concern  Initial transient behavior is neglected Decoder has finite memory  Bounded observation window

8 2011/11/8ICCAD 20118 Prior Work  Decoder synthesis [Shen et al. ICCAD09] Bounded decoder existence checking Decoder generation using ALLSAT  Halting algorithm [Shen et al. FMCAD10] Unbounded decoder existence checking (with flaw)

9 2011/11/8ICCAD 20119 Contributions  Theoretically, guaranteed decoder existence/inexistence checking with simplified formulation  Practically, fast computation Simplified CNF encoding Interpolation for decoder synthesis

10 2011/11/8ICCAD 201110 Decoder Existence Checking  Notation T xy s s's' inputoutput current state next state transition relation

11 2011/11/8ICCAD 201111 Decoder Existence Checking  Decoder exists under window (-n,p) iff is UNSAT T0T0 T –1 T1T1 TpTp T –n ……   T* 0 T* –1 T* 1 T* p T* –n …… 

12 2011/11/8ICCAD 201112 Decoder Existence Checking  Decoder does not exist iff is SAT for some n and p, where

13 2011/11/8ICCAD 201113 Decoder Existence Checking  Decoder does not exist iff is SAT for some n and p, where

14 2011/11/8ICCAD 201114 Decoder Existence Checking T0T0 T –1 T1T1 TpTp T –n ……   T* 0 T* –1 T* 1 T* p T* –n ……        LL LL        LL

15 2011/11/8ICCAD 201115 Decoder Existence Checking encoder solve M(n,p) SAT? yes no decoder exists return (n, p) solve M(n,p)  (L   (L   L  )) SAT? yes no decoder return counterexample no n := n +1 p := p +1 n := 0 p := 0

16 2011/11/8ICCAD 201116 Decoder Existence Checking  Incremental timeframe expansion Expand from outside T0T0 T –1   T* 0 T* –1 T –2  T* –2    … … T –3  T* –3    

17 2011/11/8ICCAD 201117 Decoder Existence Checking  Incremental timeframe expansion Expand from inside T0T0  T* 0 … … T –1  T* –1   T –1  T* –1 T –2  T* –2    T –2  T* –2 T –3  T* –3   

18 2011/11/8ICCAD 201118 Decoder Existence Checking  Disjunctive conditions Not good for CNF encoding

19 2011/11/8ICCAD 201119 Decoder Existence Checking  CNF encoding of disjunctive conditions E.g., Let  =  1 + 2 + 3 = (C 1 C 2 C 3 )+(C 4 C 5 )+(C 6 C 7 ) Let  = (C 1 + 1 ) (C 2 + 1 ) (C 3 + 1 ) (C 4 + 2 ) (C 5 + 2 ) (C 6 + 3 ) (C 7 + 3 ) ( 1 + 2 + 3 )  and  are equisatisfiable

20 2011/11/8ICCAD 201120 Decoder Existence Checking  Incremental CNF encoding of disjunctive conditions E.g., Let  =  1 + 2 + 3 = (C 1 C 2 C 3 )+(C 4 C 5 )+(C 6 C 7 ) Suppose  i are appended incrementally Let  = (C 1 + 1 ) (C 2 + 1 ) (C 3 + 1 ) ( 0 + 1 + 1 ) (C 4 + 2 ) (C 5 + 2 ) ( 1 + 2 + 2 ) (C 6 + 3 ) (C 7 + 3 ) ( 2 + 3 + 3 )  and ( 0  3 ) are equisatisfiable

21 2011/11/8ICCAD 201121 Decoder Existence Checking encoder solve M(n,p) SAT? yes no decoder exists return (n, p) solve M(n,p)  (L   (L   L  )) SAT? yes no decoder return counterexample no n := n +1 p := p +1 n := 0 p := 0

22 2011/11/8ICCAD 201122 Decoder Synthesis  Craig interpolation theorem: For (A  B) UNSAT, there exists an interpolant I such that 1. A  I 2. B  I UNSAT 3. I refers only to the common variables of A and B B A I

23 2011/11/8ICCAD 201123 Decoder Synthesis  The interpolant corresponds to the desired decoder T0T0 T –1 T1T1 TpTp T –n ……   T* 0 T* –1 T* 1 T* p T* –n ……  1 0 A B

24 2011/11/8ICCAD 201124 Experimental Results  Our decoding system “ Decosy ” implemented in ABC using C language  Experiments conducted on Linux machine with Xeon 2.53 GHz CPU and 48GB RAM  Final circuits mapped into mcnc.genlib library

25 2011/11/8ICCAD 201125 Experimental Results  Comparison on decoder generation time circuit [14]*Decosy area ratio delay ratio area/delaytimearea/delaytime XGXS269/7.41.23286/7.30.081.060.99 XFI5697/14.4492.583978/14.34.020.700.99 Scrambler736/3.81.88640/3.80.250.871 PCIE171/5.81.04190/6.60.081.111.14 T2Ethernet299/7.522.67583/9.01.471.951.20 HM(7,4)255§/7.3§0.12255/7.30.0811 HM(15,11) 4232§/13.8 § 56.823279/13.21.330.770.96 *Prior work [14] implemented in OCaml.

26 2011/11/8ICCAD 201126 Experimental Results  Comparison on decoder existence checking and decoder generation circuit [15]*Decosy area ratio delay Ratio area/delaytimearea/delaytime XGXS293/7.52.70295/7.10.101.010.95 XFI5697/14.41144.323913/12.57.520.690.87 Scrambler736/3.810.46640/3.80.500.871 PCIE163/6.13.91190/6.60.141.171.08 T2Ethernet269/6.9113.89526/9.712.381.961.41 HM(7,4)255§/7.3§0.12§255/7.30.0811 HM(15,11)4232§/13.8§56.92§3279/13.21.940.770.96 *Prior work [14] implemented in OCaml.

27 2011/11/8ICCAD 201127 Experimental Results  Comparison on decoder inexistence checking circuit (w/o decoder) [15]* time (s) Decosy time (s) XGXS_err2.170.01 XFI_err39.710.01 Scrambler_err3.960.08 PCIE_err2.940.01 T2Ethernet_err128.730.04 HM(7,4)_err1.350.01 HM(15,11)_err23.250.39 AD>60000.01 *Prior work [14] implemented in OCaml.

28 2011/11/8ICCAD 201128 Conclusions  We presented a sound and complete approach to decoder synthesis  An effective incremental SAT solving solution was proposed for decoder existence checking  Craig interpolation was used for effective decoder generation  Experiments showed robust and fast computation (with synthesis quality comparable to prior work)

29 2011/11/8ICCAD 201129 Thank You for Your Attention  Questions?


Download ppt "Towards Completely Automatic Decoder Synthesis Hsiou-Yuan Liu, Yen-Cheng Chou, Chen- Hsuan Lin, and Jie-Hong Roland Jiang ALCom Lab EE Dept/ Grad. Inst."

Similar presentations


Ads by Google