Presentation is loading. Please wait.

Presentation is loading. Please wait.

M. von Hellermann Frontiers in Diagnostic Technology 1/36 Active Beam Spectroscopy For ITER International Conference on Frontiers in Diagnostic Technology.

Similar presentations


Presentation on theme: "M. von Hellermann Frontiers in Diagnostic Technology 1/36 Active Beam Spectroscopy For ITER International Conference on Frontiers in Diagnostic Technology."— Presentation transcript:

1 M. von Hellermann Frontiers in Diagnostic Technology 1/36 Active Beam Spectroscopy For ITER International Conference on Frontiers in Diagnostic Technology ENEA, Frascati November 25 – 27, 2009 Acknowledgement: The EU consortium for ITER Core CXRS, ITER-NL, the ADAS project, the ITPA expert group on Active Beam Spectroscopy, ITER central team, NBI Group IPR, Bhat, Gandhinagar Manfred von Hellermann FOM Institute for Plasma Physics Rijnhuizen, NL

2 M. von Hellermann Frontiers in Diagnostic Technology 2/36 Outline  Basic concepts of active beam spectroscopy (CXRS+ BES)  Software Packages  Spectral Analysis Code  Inverse reconstruction Code  Forward Simulation Code  CXRS and BES for ITER making use of DNB & HNB  Non Thermal Slowing-Down Features  Instrumentation and Port-plug development

3 M. von Hellermann Frontiers in Diagnostic Technology 3/36 Quantitative Spectroscopy and all that …. Accompanying Software Packages ADAS membership ( http://adas.phys.strath.ac.uk ) http://adas.phys.strath.ac.uk ITER joint ADAS in 2009 See also H.P.Summers et al. and O.Marchuk et al. this conference

4 M. von Hellermann Frontiers in Diagnostic Technology 4/36 Active Beam Spectroscopy (basic principles)  localized measurement  quantitative use of intensities  intrinsic consistency of temperature, rotation and density  advanced collisional radiative atomic modelling  beam emission spectroscopy as indispensable collateral to CXRS

5 M. von Hellermann Frontiers in Diagnostic Technology 5/36 CHarge Exchange Analysis Package “CHEAP” Spectral analysis Code “CXSFIT” Spectral Prediction Code “CX-simulation” Spectrum parametrisation of active and passive features extraction of physics parameters: T i, v rot, I cx and I cont derivation of ion densities via atomic rates and donor densities Global consistency checks

6 M. von Hellermann Frontiers in Diagnostic Technology 6/36 Forward prediction of Active Spectra Impurity description Target Plasma Neutral Beam Instrumentation Fusion Device Prediction of active and passive Spectral Features Signal-To-Noise Parameter retrieval Error studies

7 M. von Hellermann Frontiers in Diagnostic Technology 7/36 CX Simulation package, contact mgvh@rijnh.nlmgvh@rijnh.nl http://www.rijnhuizen.nl/users/cxrsmgvh/simuserpackage

8 M. von Hellermann Frontiers in Diagnostic Technology 8/36 Error Analysis for CVI (1%), U-port-3,  =100ms, DNB: P=3.6MW, E=100keV/amu, 7mrad

9 M. von Hellermann Frontiers in Diagnostic Technology 9/36 ParameterRangeTime ResSpace resaccuracy v tor 5-200 km/s 10 msa/305km/s v pol 5-50 km/s 10 msa/305km/s TiTi 0.5-40 keV 10 msa/305% n z/ n e 0.05 – 5% 100msa/3010% Core He concentration 1-10%100 msa/1010% ITER CXRS measurement requirement table

10 M. von Hellermann Frontiers in Diagnostic Technology 10/36 Full grid simulation of ITER DNB MSE spectrum

11 M. von Hellermann Frontiers in Diagnostic Technology 11/36 MSE and CXRS on D error analysis Finite-Grid-Beam-Model, DNB modulated Local Fuel mixture measurement for r/a>0.2

12 M. von Hellermann Frontiers in Diagnostic Technology 12/36 Scan of Fuel mixture, Error analysis for full grid model r/a=0.3, 3.6MW DNB modulated,  =100ms

13 M. von Hellermann Frontiers in Diagnostic Technology 13/36 Non-Thermal CX features In collaboration with E.Delabie, FOM, Rijnhuizen F.Orsitto, R de Angelis, ENEA Frascati

14 M. von Hellermann Frontiers in Diagnostic Technology 14/36 Fast Ion Spectra Modelling  E fast >>  E(Q eff ) 1)Slowing-Down-Alphas (DNB & HNB) 20 keV< E < 3.5 MeV D o +He +2 (E)  D + +He +1,* (E) 2) Fast Beam Ions DNB: E< 100 keV, HNB : E < 1 MeV D o +D + (E)  D + +D 0, *(E)

15 M. von Hellermann Frontiers in Diagnostic Technology 15/36 Isotropic Alpha particle Slowing-Down-Function  -Source rate: slowing-down time: critical velocity:

16 M. von Hellermann Frontiers in Diagnostic Technology 16/36 r/a=0.3 Active thermal and non-thermal CX Alpha particle features, no background

17 M. von Hellermann Frontiers in Diagnostic Technology 17/36 Broad-band Alpha-Slowing-down Spectrum (DNB) Detection limit set by instrumentation E=100keV/amu  = 100msec F =1.8 D =30A/mm  =30A

18 M. von Hellermann Frontiers in Diagnostic Technology 18/36 Using the HNB as potential source for Slowing-Down alphas and Broad-band CXRS spectra E=0.5MeV/amu P=18 MWatt Negative ion source 10 mrad divergence DC operation

19 M. von Hellermann Frontiers in Diagnostic Technology 19/36 CX Simulation package, contact mgvh@rijnh.nlmgvh@rijnh.nl http://www.rijnhuizen.nl/users/cxrsmgvh/simuserpackage

20 M. von Hellermann Frontiers in Diagnostic Technology 20/36 Alpha Slowing Down spectrum using HNB and MSE E-port  =100msec, Kaiser spectrometer F1.8, D=30A/mm, slit 2mm

21 M. von Hellermann Frontiers in Diagnostic Technology 21/36 Aims and Expectations for ITER: Charge eXchange Recombination Spectroscopy: 1) Helium ash measurement 2) Impurity ion densities 3) Ion temperature 4) Plasma rotation 5) Fuel mixture and density 6) Slowing-Down spectra using HNB r/a>0.2

22 M. von Hellermann Frontiers in Diagnostic Technology 22/36 Active Beam Spectroscopy Upper port (UP3): - Core CXRS (EU) - BES (In) - (MSE, fBES) Equatorial Port (EP3): - Edge CXRS (RF) - MSE on HNB (US) - (fBES)  DNB: 100 keV,H, 36 A

23 M. von Hellermann Frontiers in Diagnostic Technology 23/36 Dan Thomas, Robin Barnsley, Beatrix Schunke, Chris Walker, ITER CT Diagnostic beam for ITER: E=100keV/amu, P=3.6MW, div=7 mrad, modulation 5Hz IPR, Bhat, Gandhanigar 19m

24 M. von Hellermann Frontiers in Diagnostic Technology 24/36 Courtesy: Mahendrajit Singh, IPR, Gandhinagar, India

25 M. von Hellermann Frontiers in Diagnostic Technology 25/36 4.4 degrees by re-shaping of the East column, 1.6 degrees by blanket aperture West shift,  6 degrees total Tilt of DNB by 6 o avoiding trapped particles Courtesy: N.C.Hawkes, CCFE, UK, B.Schunke, ITER Central Team

26 M. von Hellermann Frontiers in Diagnostic Technology 26/36 Beamlet divergence 7 mrad DNB Ion grid assembly and throughput limitation by blanket duct size, changed to 300mmx450mm) Courtesy: Mahendrajit Singh, IPR, Gandhinagar, India

27 M. von Hellermann Frontiers in Diagnostic Technology 27/36 Port plug and components: Conceptual design activity and R&D Design solutions for: –Mirror mounts –Shutter –Retractable tube –2ndary mirror mounts –shielding modules –Plug shell structure Analysis / calculations: –Optical –Structural analysis –Electromagnetic loads –Cooling / hydraulic –Neutronics / nuclear heating Courtesy: W.Biel,FZ-Juelich

28 M. von Hellermann Frontiers in Diagnostic Technology 28/36 Port plug and components: Design and R&D (cont‘d) Optical design of mirror labyrinth Design of a shutter for the 1st mirror Neutronics analysis Integration

29 M. von Hellermann Frontiers in Diagnostic Technology 29/36 No. Wavelength range / nm Spectral resolution (instrumental profile) / nm Etendue / mm 2 sr Spectrometer efficiency Detector efficiency Frame rate / sec -1 1460.8 – 473.6 He II, Be IV 0.1 0.05 (*) 1.0 0.5 (*) 0.60.8100 2518.9 – 533.1 C VI, Ne X, Ar XVIII 0.1 0.05 (*) 1.0 0.5 (*) 0.60.8100 3562.9 – 570.9 N VII 0.1 0.05 (*) 1.0 0.5 (*) 0.60.8100 4649.0 – 663.0 BES (H  ) 0.1 0.05 (*) 1.0 0.5 (*) 0.60.8100 High etendue 4-channel spectrometer for ITER core CXRS development project with partners from industry extremely demanding combination of etendue, resolution R = 6000 and efficiency … however required to achieve sufficient measurement accuracy, W.Biel, Jaipur 2008 Target specifications: Input f-number defined by fibre output: f/2.27 (1 spectrometer for each radial channel)

30 M. von Hellermann Frontiers in Diagnostic Technology 30/36 Spectrometer design considerations W.Biel, Jaipur 2008 Available cameras with efficiency > 80%, frame rate > 100 /sec, high full well capacity –Detector area 13 mm x 13 mm or 26 mm x 6-8 mm (vertical binning) –Possible camera development for the case 30 mm x 30 mm Echelle grating in Littrow configuration: –low diffraction order (m < 20) compatible with wide free spectral range –Groove densitym*G  2500 … 5000 / mm –Focal lengthf  150 … 300 mm –Incidence angle  50 … 75 degrees –F-numberF  1 –Order sorting needed by second dispersive element (e.g. interference filters or 2nd grating with dispersion direction in different orientation)

31 M. von Hellermann Frontiers in Diagnostic Technology 31/36 High etendue spectrometer: design proposal by Lasertechnik / ISAS 460 nm– 474 nm 518 nm– 534 nm 649 nm– 663 nm grating 3 camera objective slit grating 2 camera objective slit grating 1 camera objective slit grating 4 camera objective slit Fibre from experiment 562 nm– 571 nm Detector used: 30 mm x 30 mm area Spectral line width achieved: ~ 0.1 nm Size of the instrument: ~ 1.5 m x 1.5 m

32 M. von Hellermann Frontiers in Diagnostic Technology 32/36 High etendue spectrometer: design proposal by Lasertechnik / ISAS: Details Separation of bands by interference filters: Objective design for Littrow spectrometer

33 M. von Hellermann Frontiers in Diagnostic Technology 33/36 High etendue spectrometer: design proposal by GWU/Systematix: P. Lindblom Detector used: 26 mm x 6.4 mm area Spectral line width achieved: 0.1 … 0.13 nm Size of instrument: 3.1 m x 1.5 m Entrance fiber bundleCollimator Echelle grating GRISM Order-sorter Main focusing lens assembly Field corrector Secondary relay lens assemblies, one for each camera Sensor surface Mirrors separating spectral bands (orders 13,15,16 and18) to each camera Folding mirror ITER CXRS Proposal 1

34 M. von Hellermann Frontiers in Diagnostic Technology 34/36 High etendue spectrometer: design proposal by Dutch Space: J. Doornink, R. Vink et al.

35 M. von Hellermann Frontiers in Diagnostic Technology 35/36 Input slits Grating Channel 1 Channel 2 Channel 3 Dichroic Channel 4

36 M. von Hellermann Frontiers in Diagnostic Technology 36/36 Summary remarks  Active Beam Spectroscopy offers a rich diagnostic potential for ITER  Substantial progress has been achieved in a quantitative analysis of active spectra,DNB development and port-plug designs studies  4 ITER partners are involved EU, RF, IN,USA  Active Beam Spectroscopy for ITER remains a challenging task. Both in technological and physics ingenuity !


Download ppt "M. von Hellermann Frontiers in Diagnostic Technology 1/36 Active Beam Spectroscopy For ITER International Conference on Frontiers in Diagnostic Technology."

Similar presentations


Ads by Google