Download presentation
1
Physical Nano-Processing
PG 초정밀가공론 Chapter 4 Physical Nano-Processing Introduction FS LASER Machining 3. Electron and Ion Beam Forming 4. FIB Machining 5. Nanoprobe lithography
2
PG 초정밀가공론 4.1 Introduction
3
Electric field evaporation
STM concept - Gap / power source; 0.1nm / several volts - Tool; Sharp tip tungsten electrode Workpiece; conductive (Si) Electric field intensity; 5ⅹ1010 eVm-1 Full out Force; intensity ⅹmass = 5 ⅹ1010 eVm-1 = 5ⅹ1010ⅹ1.6ⅹ10-19 Jm-1= 8ⅹ10-8 N - Atomic bonding force = energy (J/atom) /distance (m) = 1.6ⅹ10-17 / 5.4ⅹ10-10 = 5ⅹ10-8 N Full out force > Bonding force
4
Photon beam processing
E = h ν = h C / λ … h ; Planck constant, 6.626ⅹ10-34 J s E = 0.1 ~ 10 eV ; light or laser beam λ = h C / E = 0.1 ~10 ⅹ 10-6 m = 0.1 ~ 10 ㎛ E = 1 ~ 10 KeV ; X-rays and SOR λ = 0.1 ~ 10 nm E = 0.1 ~ 1 MeV λ = 0.01 ~ nm SOR; Synchrotron Orbit Radiation
5
Photon Beam Processing
Light, Laser and radiation beams Transmit to the outer shell electrons Transform to thermal vibration or chemical activation energy of the atom
6
P/B Thermal Processing
The saturation (evaporation) temperature Ts = Q / ( π λ a ) = q a / λ λ; Thermal conductivity, a; radius of projected energy beam Q; input power, q; input power density ex) Stainless steel, a=0.2㎛ λ = 0.14ⅹ102 Jm-1K-1s-1, Ts; ( ) K input power density q = 2.5ⅹ 1011 W/m2 Temperature gradient φ = (0.84 – 0.254) Ts / a = 0.6 q / λ
7
Thermal evaporation using RPP
Thermal evaporation using reactive photochemical P ( Excimer laser < 0.2㎛ ) - Photosensitive dry film; silver halide photography - Photosensitive plastics; polymerized active atoms c) Characteristic response time tc (Rate of temperature change at constant input power) tc = π a2 / κ = π a2 ρ c / λ Thermal diffusivity κ = λ / ρ c ρ; density, c; specific heat d) Change in temperature diffusivity with Input power density Thermal evaporation using photoreactive processes ; Radiation (X-ray and SOR) High energy, small wave length Nano patterning of 10nm order Higher resolution patterning of sub nano.; post chemical etching to develop latent images should be improved
8
Directional E beam processing
Mechanism 1. Thermal evaporation of atomic bits by an energized electron 2. Kinetic energy transfer to the outer shell of atom and increase the thermal vibration energy of nucleus. Electron; Size 2.8ⅹ10-6 nm, mass 9ⅹ10-31kg A few micron beam diameter; 수백 KeV 가능 원자격자( nm)를 뚫고 침투 Theoretical penetration depth Rp Rp = 2.2 ⅹ10-12 V2 / ρ (V; acceleration voltage) ex) Steel, Rp = 2.2ⅹ10-12ⅹ(50ⅹ103ⅹ1.6ⅹ10-19)2 / 7600 = 7㎛ Aluminum; 10㎛
9
Directional E Beam Processing
Electron penetration range; (Thermal evaporation) Depth of max. absorption rate; Xe Center of absorption depth ; xd >>> Number of electron at surface absorption; small, not suitable for fine patterning E beam processing based on reactive activation by a focused E beam lithography >> Activation of electron sensitive materials (PR); Polymerization or depolymerization >> High resolution in subnano range because no thermal diffusion and little secondary scattering occur
10
Directional ion beam processing
Ion sputter deposition ; K.E. of sputtered atom(수십eV) > K.E. of an ordinary evaporated atom >>>> Sputtered atom with an energy beyond the surface barrier potential collides with a target and adhere more firmly than in ordinary vapor deposition Ion sputter machining (etching) ; Electrically accelerated inert Ar gas ion 10 KeV, 2ⅹ105 m/s, 1.3ⅹ10-4 Pa vacuum >>>> Most of projected ions interfere with surface atoms of the workpiece (Ar ion; 1A) Penetration depth; several nm, 10 layers of atom Ion implantation >> 100 KeV ; deep penetration.. Interstitial or substitial atoms >>>> Atomic size impurities are injected in wafer pro. Ion mixing ; high energy ions with various elements surface treatment or modification of workpiece
11
Directional ion beam processing
Reactive Ion processing using energized chemically reactive ions Reactive ion of CCl4 >>>> Al removal Reactive ion of CF4 >>>> Si removal
12
Directional ion beam processing
Ion beam sources of the high frequency plasma type and ion shower type using a d.c. discharge or 2.45 GHz microwave resonator
13
Q. 차승훈 Directional E beam processing과 Directional ion beam processing 공정의 차이(장단점, 적용분야 등)를 비교 설명해 주실 수 있습니까? > fine removal of thin layer / high efficient deep drilling 2. 또한, 이러한 공정을 가능하게 하는 장비를 소개해주실 수 있습니까?
14
Plasma/ Molecular surface proc.
Plasma ; an electrically conductive state of gases in which approximately equal numbers of electrons and ions are concurrently present 대기압 하에서 플라즈마는 10,000 ~ 20,000 K 온도에서 아크 방전 가스로 나타난다. 이것은 해리된 전자 및 이온의 재결합에 의해 발생한다. 저압에서는 플라즈마가 상대적으로 낮은 온도에서 직류 방전이나 마이크로웨이브 여기에 의해 발생 플라즈마를 이용한 Nano processing은 저온 저압에서 가능하게 한다. Molecular beam surface processing 고진공 (10-7~10-8 Pa) 에서 전자빔에 의한 Thermal evaporation 에 의해 얻어 진 원자/ 분자를 direct bombardment Kinetic energy ~ 1 eV Epitaxial growth in S.C. materials Atomic Layer Deposition (ALD)
15
Femto Second Laser Machining
16
Femto Second Laser Machining
레이저 미세가공기술에서 가공정밀도를 결정하는 중요한 인자 중 하나가 펄스폭(pulse width). 펄스폭이 길어질수록 레이저빔에 의한 열영향부(heat affected zone)가 넓어져서 가공정밀도가 떨어짐. 1990년대에 이르러 극초단 펄스 레이저(ultrashot pulse laser)가 개발되기 시작. 극초단 펄스 레이저를 이용한 미세가공은 비열적(non-thermal) 가공. 열영향부를 최소화할 수 있어 sub-㎛급 가공이 가능 레이저의 비선형(non-linear) 광학현상으로 인한 재료 무의존성(independency) IT/BT/NT 분야의 초정밀 핵심부품 제작. 극초단 펄스 레이저의 정의 열확산(thermal relaxation) 시간이 금속재료의 경우에는 수십-수 피코초(picosecond)이며, 극초단 펄스 레이저는 그 펄스폭이 재료의 열확산 시간보다 짧기 때문에 레이저빔이 조사되는 부분만 제거되어 초정밀 가공이 가능. - Nd:YVO4를 매질로 사용하는 피코초 레이저 Ti:Sapphire를 매질로 사용하는 펨토초 레이저 100펨토초는 빛이 머리카락의 반 진행시간 펄스 당 수백 GW까지의 peak power 방출 우리나라 생산할 수 있는 최대전력이 47GW
17
Femto Second Laser Machining
재료 표면에 초점을 위치시켰을 때 실제 가공이 일어나는 부분은 레이저빔의 에너지가 임계값 이상인 부분으로 국한된다. 경우에 따라서 초점직경의 1/5이 될 수도 있다. 즉 파장이 800nm인 펨토초 레이저를 이용하여 160nm의 직경을 가지는 홀을 가공할 수 있다.
18
QQ. 김도연 Femto Second Laser Machining에서 열 영향이 적은 이유로 열전달 시간 여유가 없다고 명시되어 있는데 열이 직접적으로 미쳤을 때 발생될 수 있는 문제와 열의 한계 범위에 대해 설명 부탁드립니다. > Solid to gas .. High aspect ratio (HAR) Drilling depends on material intrinsic behavior.
19
Femto Second Laser Machining
금속가공 레이저빔이 금속재료 표면에 조사되면 순차적으로 원자, 분자 및 결정격자로 전이가 일어나서 열이 발생하는데 약 10 피코초 가량의 시간이 소요된다. 금속가공의 경우에 결정격자의 열반응은 펄스폭에 의해 결정이 되는 것이 아니고 재료의 열확산 시간에 의해 정해진다. 이는 금속가공에 있어서는 펄스폭이 열확산 시간보다 짧은 경우에는 동일 출력의 피코초 레이저와 펨토초 레이저의 가공 성능은 큰 차이가 없다는 것을 의미한다. 금속재료를 가공하는 경우에는 상대적으로 높은 평균출력을 가진 피코초 레이저가 유리하다. 극초단 펄스 레이저를 이용한 금속 가공예
20
Femto Second Laser Machining
광투과재료의 내부가공 800nm의 파장을 가지는 Ti:Sapphire 펨토초 레이저빔은 일반유리 및 수정(crystal)을 투과하나, 다광자 흡수(multi-photon absorption) 및 터널이온화 등의 비선형 광학현상이나 양자현상이 유기되어 다수의 운반매체가 극히 짧은 시간영역에서 생성하고, 조사부위에 남겨진 정전하를 갖는 핵이 쿨롱(Clulomb)폭발을 일으키는 빠른 프로세스가 공간형성에 기여 300nm 이하의 미소공간에서 굴절률 변화를 유기하거나 발광성 결함을 생성하여 1.2Tbit/cm3의 기록밀도를 가지는 고밀도 3차원 광메모리(optical memory)도 제작. 광도파로(optical waveguide), 3차원 광결정(photonic crystal) 등과 같은 광통신 소자의 제작 무기물, 폴리머와 같은 유기물에도 적용 단량체(monomer)가 함유된 레진(resin) 내부에 이광자 공명(two-photon process) 유도 > 국부적으로 폴리머(polymer)를 형성. 선폭은 200nm 제작.
21
Multiphoton lithpgraphy
Multiphoton lithography (direct laser writing) of polymer template is similar to standard photolithography techniques. Without reticles .Two-photon absorption is utilized to induce a dramatic change in the solubility of the resist. Transparent at the wavelength of the laser used for creating the pattern. Polymerization occurs at the focal spot of the laser and can be controlled to create an arbitrary three-dimensional periodic or non-periodic pattern. >> rapid prototyping of structures with fine features. - Since two-photon absorption is a second-order, non-linear process, several orders of magnitude weaker than linear absorption, very high light intensities are required to increase the number of such rare events. - 3D structuring
22
Femto Second Laser Machining
23
QQQ. 서은비 Femto Second Laser Machining에서 3차원 광학현상에 의해 매질의 굴절률에 공간적인 변형율을 가져와 self-focusing이 발생한다고 하였는데, 어떤 원리를 통해 매질에서의 비선형 현상이 발생하는지 원리에 대해 좀더 알고 싶습니다. > 설명 또한 p.21에서 설명된 pulse amplification 에서, Amplifier에 의해 증폭된 파장의 focusing이 일어나는 원리가 궁금합니다
24
Self focusing Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterised by an initial transverse intensity gradient, as in a laser beam. The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing is often observed when radiation generated by femtosecond lasers propagates through many solids, liquids and gases. Depending on the type of material and on the intensity of the radiation, several mechanisms produce variations in the refractive index which result in self-focusing: the main cases are Kerr-induced self-focusing and plasma self-focusing.
25
Kerr-induced self-focusing
Optical Kerr effect a non-linear process which arises in media exposed to intense electromagnetic radiation, and which produces a variation of the refractive index n as described by the formula n = n0 + n2I, where n0 and n2 are the linear and non-linear components of the refractive index, and I is the intensity of the radiation. Since n2 is positive in most materials, the refractive index becomes larger in the areas where the intensity is higher, usually at the centre of a beam, creating a focusing density profile which potentially leads to the collapse of a beam on itself. Self-focusing occurs if the radiation power is greater than the critical power[ where λ is the radiation wavelength in vacuum and α is a constant which depends on the initial spatial distribution of the beam. α ≈ [Townes beams], α ≈ [Gaussian beams]. For air, n0 ≈ 1, n2 ≈ 4×10-23 m2/W for λ = 800 nm, and the critical power is Pcr ≈ 2.4 GW, corresponding to an energy of about 0.3 mJ for a pulse duration of 100 fs. For silica, n0 ≈ 1.453, n2 ≈ 2.4×10-20 m2/W, and the critical power is Pcr ≈ 1.6 MW. Kerr induced self-focusing is crucial for many applications in laser physics, both as a key ingredient and as a limiting factor. For example, the technique of chirped pulse amplification was developed to overcome the nonlinearities and damage of optical components that self-focusing would produce in the amplification of femtosecond laser pulses.
26
Femto Second Laser Machining
Stretcher Amplifier Compressor (Dispersive material) (Grating pair)
27
Femto Second Laser Machining
System configuration
28
Femto Second Laser Machining
System specification
29
Femto Second Laser Machining
30
Femto Second Laser Machining
31
Femto Second Laser Machining
32
Femto Second Laser Machining
33
Femto Second Laser Machining
Single shot experiment (1)
34
Femto Second Laser Machining
Single shot experiment (2)
35
Femto Second Laser Machining
36
Femto Second Laser Machining
37
Q. 이동진 1. 다른 조건이 동일하다고 보았을 경우, 단지 두께가 200 nm에서 500 nm로 변경되었을 때 single shot의 모양이 다른 이유가 궁금합니다.
38
Femto Second Laser Machining
Result of Method 2
39
QQ. 김성민 Q. Physical Nano-Processing
펨토초 레이저 가공장치를 통한 마이크로 SUS304 박판에 대하여 마이크로 유로가공 시 초점위치에 따른 피가공물의 특성을 알고 싶습니다. 1) 가공면의 상태는 초점에서 가공한 경우보다 초점위치에서 약간 떨어진 곳에서 우수한 가공면을 얻을 수 있음 2) 레이저 가공을 위한 평균출력이 같은 경우 초점위치에 따라 가공 폭과 가공 깊이는 반비례 함
40
Femto Second Laser Machining
41
Femto Second Laser Machining
42
Femto Second Laser Machining
43
Femto Second Laser Machining
44
Femto Second Laser Machining
45
Femto Second Laser Machining
46
Femto Second Laser Machining
47
Femto Second Laser Machining
48
Femto Second Laser Machining
49
Femto Second Laser Machining
50
Femto Second Laser Machining
51
Femto Second Laser Machining
52
Femto Second Laser Machining
53
Femto Second Laser Machining
54
Femto Second Laser Machining
55
Femto Second Laser Machining
56
Femto Second Laser Machining
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.