Download presentation
Presentation is loading. Please wait.
Published byCandice Barber Modified over 8 years ago
1
講者: 許永昌 老師 1
2
Contents 2
3
Line integrals In Riemann integrals (http://mathworld.wolfram.com/RiemannIntegral.html ), line integrals can be written ashttp://mathworld.wolfram.com/RiemannIntegral.html C V dr=lim r i 0 i V(r i ) r i. C V dr= V x dx+ V y dy+ V z dz = C V // dr = C Vdr //. NOTE: Physical applications: work, potential, etc. 3
4
Example P59e (P56) Path-Dependent Work Geometric: The line integrals of path OA & OB =0 because of F(r i ) r i. Algebraic: 4 Force field Path 1 Path 2 O A BC How about a curved path?
5
Surface Integrals 5
6
In Riemann integral, ê i d = ê i ndA=dAcos . The projection of the surface. J d = J x d x + J y d y + J z d z. d x =sign( ) | dydz |. d y =? d z =? 6 Example: on the xy plane. êiêi dd
7
Surface integrals J z dxdy= 7
8
Example: electric flux Assume, what is the electric flux through the green surface x 2 +y 2 +z 2 =1 & z 0. 8
9
Volume Integrals 9 dd
10
Integral Definitions of Gradient, Divergence and Curl Point Line Area Volume. 10 dd
11
Integral Definitions of Gradient, Divergence and Curl 11 d z >0 d z <0
12
Summary Line integrals: Surface integrals: Volume integrals: Symbols: dr, d and d have told you the dimension of the integration element, you can use only one to represent the integration. Closed loop: Closed surface: Gradient, divergence and curl can be defined by integrations. P66e (P58). 12
13
Homework 1.9.3e (1.10.5) 1.9.4e (1.10.6) Essential 那一本其實在內文與 exercises 都有不一樣且 不錯的題目可以練習。 13
14
1.9 nouns 14
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.