Download presentation
Presentation is loading. Please wait.
Published byPauline May Modified over 8 years ago
1
核物理学( 12 月14日、特別講義) 研究の内容についての発表を外部で活発に行っていますが、 内部の学生に余り伝える機会がありません。 (今年10月:北海道地区の学生に集中講義 来年後期:大阪大学で集中講義 国内学会:岡山大学2件、九州工業大学2件、高エネ研 国際学会:ポーランド2回、スペイン2件、韓国(来年予定)、大阪(先週 )2件) 国際学会:ポーランド2回、スペイン2件、韓国(来年予定)、大阪(先週 )2件) == 比連崎+永廣分のみ、ほとんどが招待講演== そこで、外部で使ったスライドで、内部の学生にも研究に 関して、 お話しする機会を持とうと思います。研究内容の紹介に併 せて、「研究」と「勉強」の違い、研究室の紹介もしよう と思っています。 まずは、研究内容に関するイントロです。
2
Interests of Meson-Nucleus systems Nara Women’s University Satoru Hirenzaki Hokkaido area school, 2010
3
1. Introduction and Motivation 2. Some formulation 3. Recent Topics 4. Summary
4
1. Introduction and Motivation Object Hadron – Nucleus bound systems. Hadron – Nucleus bound systems. Coulomb + Strong ・・・ Exotic Atoms Coulomb + Strong ・・・ Exotic Atoms (Deeply Bound) atom, Kaonic Atom, p atom … (Deeply Bound) atom, Kaonic Atom, p atom … Strong ・・・ Exotic Nuclei Strong ・・・ Exotic Nuclei Mesic Nuclei (K, η, η(958), ω, Φ…), Hypernuclei, … Mesic Nuclei (K, η, η(958), ω, Φ…), Hypernuclei, … Nuclear radius of 15 N 1s 2s 3s ex.) Kaonic Atoms And Kaonic Nuclei J. Yamagata By J. Yamagata
5
Kaonic Atoms Kaonic Nuclei K-K- K meson ( m K ~ MeV) Binding energy order of 10keV ~ MeV 500 Normal atom cf.) Normal atom electron ( m e ~ 0.5MeV) Binding Energy -- order of eV ~ keV K-K- Very Deep !! Very Deep !! Binding Energy 10 ~ 100 MeV
6
1. Exotic Many Body Physics 2. Hadron Physics at finite density Fundamental theory (QCD) Fundamental theory (QCD) Effective theory Effective theory Hadron property at finite Hadron property at finite Infinite System Finite System Infinite System Finite System Mesic Atoms and Mesic Nuclei Mesic Atoms and Mesic Nuclei 1. Introduction and Motivation Nuclear radius of 15 N 1s 2s 3s halo nuclei Pionic Atoms in halo nuclei Co-existence of Pion-Neutron-halo Ex.)
7
Higgs mechanism U A (1) Anomaly Effect : J p = 0 - Spontaneous Chiral Symmetry Breaking Kunihiro, Hatsuda, PLB206(88)385, Fig.3 Anomaly effect in vacuum
8
Information on at finite ~ 0, (T~0) Eigen state observation Invariant Mass Method Quantum number fixed Selective information Umemoto et al., PRC62 (2000) with Ericson-Ericson, Ann. Phys. 36 (66) 323 Seki-Masutani, Phys. Rev. C27(83)2799 b1b1 T
9
Observation of Mesic Atoms by x-ray 4f 3d Kaonic Atom data C.T.A.M. De Laat, et al., Nucl.Phys.A523:453-487,1991. S. Hirenzaki, Y. Okumura, H. Toki, E. Oset, A. Ramos, Phys.Rev.C61:055205,2000.
10
Theoretical Level Structure – How can we observe? Observed by X-ray Spectroscopy Toki, Yamazaki(1988), Toki, Hirenzaki, Yamazaki, Hayano (1989)
11
11 Toki, Hirenzaki, Yamazaki, Hayano (1989)
12
Mesons in Nuclei …… seems interesting. However, x-ray method has limitation, Obviously! New methods are proposed. π atom in GSI (1996, 1998, 2002) π atom in GSI (1996, 1998, 2002) Proposals to RIBF and JPARC Proposals to RIBF and JPARC
13
Proposed experiments at JPARC (http://j-parc.jp/NuclPart/Proposal_e.html)http://j-parc.jp/NuclPart/Proposal_e.html JPARC Day 1 Experiment at Hadron Hall *Search for Kaonic Nuclear Bound states
14
By K. Itahashi, 17-24 Oct. 2010 By H. Ohnishi By K. Ozawa By K. Itahashi
15
ちょっとブレイク ーーー日本の現状ーーー ちょっとブレイク ーーー日本の現状ーーー 新しい加速器2台が極最近稼働して、新しい結果が色々出てくる前夜のような状況です。 *理化学研究所(埼玉): RIBF 加速器 宇宙における元素合成、中性子星の内部状態の研究な どに 宇宙における元素合成、中性子星の内部状態の研究な どに 繋がる成果 繋がる成果 * JPARC 研究所(茨城): 30GeV 加速器 質量の起源、クォーク・ハドロンの性質、ストレンジ ネスを 質量の起源、クォーク・ハドロンの性質、ストレンジ ネスを 持つ原子核の研究。 持つ原子核の研究。 いろんなテーマで最先端に入る切り口があります。
16
How can we observe it ?
17
Missing Mass Spectroscopy emitted particle Incident particle target meson -hole proton (K,N) * Kaonic Atoms and Kaonic Nuclei - J. Yamagata et al., PTP114 (05)301.(Errata:114(05)905) PRC74(06)014604. - T. Kishimoto Group - M. Iwasaki Group (d,3He) * -atom - theory (S. Hirenzaki, H. Toki, T. Yamazaki, PRC44(91)2472,…) - experiment (K. Itahashi et al., PRC62(00)025202,…) ( ,p) * -nucleus (Marco, Weise, PLB502(01)59) (M. Kaskulov, H. Nagahiro, S. Hirenzaki, E. Oset ; nucl-th/0610085) * -atom (Hirenzaki, Oset, PLB527(02)69) In-Medium Dispersion Relation Medium Effects look carefully !! Peaks!!
18
Missing Mass Spectroscopy Missing Mass Spectroscopy N initial final look carefully !! In-Medium Dispersion Relation Zoom In meson Medium Effects Peaks!!
19
Formation Cross Section by ‘pick-up’ reactions, (d, 3 He), ( , N), etc. Effective Number approach Recoilless Recoilless Substitutional States formation Substitutional States formation Various activities, (n,p), (d, 2 He); (n,d), (p, 2 He); ( ) … Various activities, (n,p), (d, 2 He); (n,d), (p, 2 He); ( ) … Experimental data
20
Good Reaction : d + Nucleus 3 He + atom
21
Outgoing particle energy lowerhigher
22
22 Deeply bound - states in the 208 Pb(d,3He) reaction PRC62(00)025202 K. Itahashi et al.
23
23 PRL88(02)122301 Hirenzaki and Toki, PRC55(97)2719 Deeply bound 1s and 2p Pionic States in the 206 Pb(d, 3 He) reaction Hirenzaki, Toki, H. Geissel et al,
24
Pionic 1s states of Sn nuclei
25
Deepest 1s states in Pb and Sn : observed Nice spectra were obtained. Theoretical Potentials are classified as Rank - A, B, C, D H. Geissel et. al., PRL88(02)122301
26
Information on at finite ~ 0, (T~0) Eigen state observation Invariant Mass Method Quantum number fixed Selective information Umemoto et al., PRC62 (2000) with Ericson-Ericson, Ann. Phys. 36 (66) 323 Seki-Masutani, Phys. Rev. C27(83)2799 b1b1 T
27
27 Deeply Bound Pionic Atom by (d, 3 He) K. Suzuki et al. Phys. Rev. Lett. 92(2004) 072302 GOR relation + Tomozawa-Weinberg Relation
28
There have been active discussions K. Suzuki et al., Phys. Rev. Lett. 92(2004)072302 observation Kolomeitsev, Kaiser, Weise, Phys. Rev. Lett. 90(2003)092501 in two-loop chiral perturbation in two-loop chiral perturbation Energy dependent of Energy dependent of Gauge coupling of V c Gauge coupling of V c Phenomenological pieces (B 2, p-wave terms) Phenomenological pieces (B 2, p-wave terms) Phys.Lett.B670:109-113,2008. Daisuke Jido, Tetsuo Hatsuda, Teiji Kunihro, Phys.Lett.B670:109-113,2008. In-medium Pion and Partial Restoration of Chiral Symmetry ‘In-medium Pion and Partial Restoration of Chiral Symmetry’---------- Garcia-Recio, Nieves, Oset, Phys. Lett. B 541(2002)64 Discussion on n (n>1) ? M. Doring, E. Oset, arXiv:0705.3027 [nucl-th] s-wave pion-nucleus optical potential in chiral unitary model s-wave pion-nucleus optical potential in chiral unitary model E. Friedman and A. Gal E. Friedman and A. Gal, Phys. Lett. B578 (2004)85 G. Chanfray, M. Ericson, M. Oertel G. Chanfray, M. Ericson, M. Oertel, Phys. Lett. B563(2003)61
29
Hadron Physics at finite density Hadron Physics at finite density Fundamental theory (QCD) Fundamental theory (QCD) Effective theory Effective theory Hadron property at finite Hadron property at finite Infinite System Finite System Infinite System Finite System Mesic Atoms and Mesic Nuclei Mesic Atoms and Mesic Nuclei seems to be interesting and possible. However, ……not so simple… However, ……not so simple… Many researches !!
30
さて研究室の状況1、この分野に関しては、世界的な業績を上げています。 (おおげさでも誇張でもありません。) (おおげさでも誇張でもありません。) 2、研究室の学生は、国際的な業績を普通にあげられます。 (4回生が終わった時点で物理学会発表、 M1 でハワイの国際会議発表(旅費は研究室から)等、 十分できます。) 3、あんまり今まで勉強が出来なかった 人も、 これからのやる気で大丈夫! (勉強と研究は違うし、ちゃんと教える から) 1 − 3に関しては、次で詳しく やる気のある人には理想的な研究室なんです よ。。。。
31
1、この分野に関しては、世界的な業績を上げています。===たとえば、あちこちでの講演。。
32
これで今年の分だけです。 HP 見て下さい。
33
2、研究室の学生は、国際的な業績を普通にあげられます。 (4回生が終わった時点で物理学会発表、 M1 でハワイの国際会議発表(旅費は研究室から)等、 十分できます。)ーー例:池野さん (4回生:卒研テーマ で) (以下 M1 ) うちでは、これぐらいは、やる気があれば十分出来るのです。。。。 研究室から補助貰って海外の国際会議に行ってキャリアアップもいいので は?
34
*国際会議発表(旅費は研究室から)ですが。。。 。。。 うちの研究室は予 算あります。で も研究室人数少 ない。 私は外部の人たち より奈良女の学 生に補助を出し て、どんどん国 内外で活躍して もらいたい! 2国間共同研究 日本代表:比連崎
35
3、あんまり今まで勉強が出来なかった人も、 これからのやる気で大丈夫! (勉強と研究は違うし、ちゃんと教えるか ら) もちろん基礎的な勉強も必要ですが、、 =>次ページの図 勉強と研究: 研究は「教科書に無い新しい発 想」。 現存するものの理解とは違う。 「ちゃんと教える」 人数が少ない方が圧倒的に 先生の指導を独占できる(有利!)と思いませんか? 私は東京理科大(私学)出身です。一人の先生に 多くの学生がついて、緻密な指導が可能かどうかは 疑問があります。当時、国立大の「学生 / 教員」の比は、 ものすごくうらやましかった。
36
永廣さんの図 やる気のある人には理想的な研究室なんです よ。。。。 また、学生を教える事に、大変意欲を持っていま す。
37
それから。。。。。 *就職希望の人も、もちろん welcome! いままでの研究室 出身者のほとんどは就職してます。研究室在籍する間に 、一生懸命やってくれれば良い。 *卒研のテーマも相談に乗ります。(詳しくは HP 見て下 さい。) *就職担当をしていた時の経験から、企業の担当者は、=ちゃんと専門(物理)の能力を備えているか=卒研をきっちり指導されているか 等も見ています。 推薦した学生に対して「物理がこんなに出来なくては。。 」と 言われた事もあります。 *物理出身を「うり」にして生きて行くのに、物理を修得 するのは、まぁ必須でしょうね。
38
さて閑話休題 この後は、先週の国際会議(招待講演)で発表した最新の話題。ちょっと難しいかもしれません。
39
3. Recent Topics
40
Structure and Formation of Meson Nucleus Systems S. Hirenzaki (Nara Women’s Univ.) International conference BARYONS’10 International conference BARYONS’10 Dec. 7-11, 2010, Osaka, Japan Dec. 7-11, 2010, Osaka, Japan
41
Introduction and Motivation Mesons in nuclei and main interest (and my collaborators) Pionic Atom … fpi at finite density (Toki, Yamazaki, Hayano, Itahashi, K. Suzuki,,,) Pionic Atom … fpi at finite density (Toki, Yamazaki, Hayano, Itahashi, K. Suzuki,,,) K-atom & nuclei … deeply bound nuclear state ? (Yamagata-Sekihara, Jido) K-atom & nuclei … deeply bound nuclear state ? (Yamagata-Sekihara, Jido) -mesic nuclei … N*(1535) in medium (Nagahiro, Jido,,,) -mesic nuclei … N*(1535) in medium (Nagahiro, Jido,,,) ’(958) -mesic nuclei … U A (1) anomaly in medium (Nagahiro, Takizawa) ’(958) -mesic nuclei … U A (1) anomaly in medium (Nagahiro, Takizawa) Φ –mesic nuclei … mass shift, OZI rule (Yamagata-Sekihara, Cabrera, Vicente-Vacas) Φ –mesic nuclei … mass shift, OZI rule (Yamagata-Sekihara, Cabrera, Vicente-Vacas) -mesic nuclei... bound state ? mass shift ? (Kaskulov, Nagahiro, Oset) -mesic nuclei... bound state ? mass shift ? (Kaskulov, Nagahiro, Oset) -mesic nuclei … m ~ 2m enhancement ? (Nagahiro, Hatsuda, Kunihiro) -mesic nuclei … m ~ 2m enhancement ? (Nagahiro, Hatsuda, Kunihiro) -------- -------- + in medium … S=+1 hypernuclei [(K +, + )] (Nagahiro, Oset, Vicente-Vacas) + in medium … S=+1 hypernuclei [(K +, + )] (Nagahiro, Oset, Vicente-Vacas) 41
42
Formation of mesic nucleus at JPARC and COSY
43
43 Introduction of -mesic nuclei Many works for mesic nuclei from 1980’s Motivation and our aim » -N system … strongly couples to the N*(1535) resonance -mesic nuculei … doorway to in-medium N*(1535) » N*(1535) … a candidate of the chiral partner of nucleon chiral symmetry for baryons Theor. Theor. Liu, Haider, PRC34(1986)1845 Kohno, Tanabe, PLB231(1989)219; NPA519(1990)755 Garcia-Recio, Nieves, Inoue, Oset PLB550(02)47 C. Wilkin, T. Ueda, S. Wycech, …… Exp. Exp. Chrien et al., PRL60(1988)2595 TAPS@MAMI ( + 3 He 0 + p + X) COSY-GEM (p + Al 3 He + Mg- ) WASA-at-COSY (d + d 3 He + p + JPARC, With H. Nagahiro, D. Jido
44
44 Chiral doublet model DeTar, Kunihiro, PRD39 (89)2805 Jido, Oka, Hosaka, Nemoto, PTP106(01)873 Jido, Hatsuda, Kunirhiro, NPA671(00)471 Lagrangian Physical fields N* : chiral partner of nucleon Mass difference * reduction of mass difference * C~0.2 :the strength of the Chiral restoration at the nuclear saturation density Chiral unitary model Kaiser, Siegel, Weise, PLB362(95)23 Waas, Weise, NPA625(97)287 Garcia-Recio, Nieves, Inoue, Oset, PLB550(02)47 Inoue, Oset, NPA710(02) 354 A coupled channel Bethe-Salpeter eq. * No mass shift of N* is expected in the nuclear medium. * In this study, we directly take the eta-self-energy in the ref.NPA710(02)354 a resonance generated dynamically * the N* is introduced as a resonance generated dynamically from meson-baryon scattering. Chiral model for N and N*
45
45 -nucleus interaction : potential descriptions self-energy optical potential potential nature at threshold attractive medium effect repulsive energy /0/0 mm m N* -m N 0123456 r [fm] 0 20 4060-20 -40 -60 -80 Re [V opt ] [MeV] t- approximation (CDM : C=0.0) Chiral doublet model C=0.2 Chiral Unitary model (Inoue, Oset, NPA710(02)354) repulsive core attractive pocket + (crossed term) D.Jido, H.Nagahiro and S.Hirenzaki, PRC66(02)045202D.Jido, H.Nagahiro and S.Hirenzaki, PRC66(02)045202
46
46 Chrien at al., PRL60(88)2595, Fig.1 Li C O Al Chrien et al., PRL60(1988)2595 p = 800 MeV/c : proton angle : 15 deg. (Lab.) p = 800 MeV/c : proton angle : 15 deg. (Lab.) search for predicted narrow bound state by Liu, Haider, PRC34(86)1845 search for predicted narrow bound state by Liu, Haider, PRC34(86)1845 negative results (bound state peak was not observed) chiral unitary chiral doublet 80 40 0 E ex – E 0 [MeV] 050100-50-100 050100-50-100 30 20 10 0 0 deg. 15 deg. 100 200 300 400 500 0 [MeV] 0.811.21.40.60.4 p [GeV/c] momentum transfer 0 deg. 15 deg. ( +,p) spectra : experiment at Brookhaven Chrien at al., PRL60(88)2595, Fig.1 Li C O Al
47
47 Chrien at al., PRL60(88)2595, Fig.1 Li C O Al Chrien et al., PRL60(1988)2595 p = 800 MeV/c : proton angle : 15 deg. (Lab.) p = 800 MeV/c : proton angle : 15 deg. (Lab.) search for predicted narrow bound state by Liu, Haider, PRC34(86)1845 search for predicted narrow bound state by Liu, Haider, PRC34(86)1845 negative results (bound state peak was not observed) 100 200 300 400 500 0 [MeV/c] 0.811.21.40.60.4 p [GeV/c] momentum transfer 0 deg. 15 deg. ( +,p) spectra : experiment at Brookhaven 30 0 10 20 0-50-10050100150 E ex – E 0 [MeV] wider energy range wider energy range proton angle = 0 degree proton angle = 0 degree S/N ~ 1/10 need background reduction S/N ~ 1/10 need background reduction doublet unitary 15 deg. H.Nagahiro, D.Jido, S.Hirenzaki, PRC80(09)025205
48
48 A Simple Theoretical Model for Momentum transfer Momentum transfer p d = 1.025 GeV/c, p = p = 0 at threshold in C.M. Data of d d 4 He Data of d d 4 He Simple spectral structure for light systems Simple spectral structure for light systems System consists of System consists of 2 Nucleon + 2 Nucleon 4 Nucleon + 1 meson Some remarks (COSY Proposal) (P.Moskal, arXiv:nucl-ex/09093979)
49
49 Some remarks Transition ( -production) part Transition ( -production) part High q transfer at each propagator Parameterize this part. Fix by production data A Simple Theoretical Model for
50
50 d d Green function method total conversion escape threshold E tot threshold dd 4 He ) data Schematic picture with - optical potential A Simple Theoretical Model for
51
51 Numerical Results Arbitrary unit 0 1 2 3 4 5 6 7 8 010155 −5−5−5−5 − 10 − 15 − 20 E − m [MeV] tot [nb] 0 5 10 15 20 25 (V 0,W 0 ) = (−100, −10) MeV p 0 = 500 MeV/c
52
52 Numerical Results tot [nb] 0 5 25 15 20 Arbitrary unit 0 2 3 4 5 6 10 (V 0,W 0 ) = (−100, −20) MeV p 0 = 500 MeV/c 010155 −5−5−5−5 − 10 − 15 − 20 E − m [MeV] ~~ ~~
53
’(958) –mesic nucleus ’(958) –mesic nucleus
54
54 ’ (958) mesic nuclei formation ’ (958) meson … close connection to the U A (1) anomaly many theoretical works many theoretical works in vacuum / at finite temperature / at finite density in vacuum / at finite temperature / at finite density R. D. Pisarski, R. Wilczek, PRD29(84)338 R. D. Pisarski, R. Wilczek, PRD29(84)338 T. Kunihiro, T. Hatsuda, PLB206(88)385 / T. Kunihiro, PLB219(89)363 T. Kunihiro, T. Hatsuda, PLB206(88)385 / T. Kunihiro, PLB219(89)363 V. Bernard, R.L.Jaffe and U.-G.Meissner, NPB308(1988)753 V. Bernard, R.L.Jaffe and U.-G.Meissner, NPB308(1988)753 Y. Kohyama, K.Kubodera and M.Takizawa, PLB208(1988)165 Y. Kohyama, K.Kubodera and M.Takizawa, PLB208(1988)165 K. Fukushima, K.Onishi, K.Ohta, PRC63(01)045203 K. Fukushima, K.Onishi, K.Ohta, PRC63(01)045203 P. Costa et al.,PLB560(03)171, PRC70(04)025204, etc … P. Costa et al.,PLB560(03)171, PRC70(04)025204, etc … poor experimental information at finite density poor experimental information at finite density U A (1) anomaly in medium from the viewpoint of “mesic nuclei” the ’ properties, especially mass shift, at finite density the ’ properties, especially mass shift, at finite density Nambu-Jona-Lasinio model with the KMT interaction explicit breaking the U A (1) sym. Kobayashi, Maskawa Prog.Theor.Phys.44, 1422 (70), G. ’t Hooft, Phys.Rev.D14,3432 (76) Kunihiro, Hatsuda, PLB206(88)385 Anomaly effect in vacuum H.Nagahiro., S. H, PRL94(05)232503 H. Nagahiro, M. Takizawa and S. H, PRC74(06)045203
55
55 ’ mass shift in medium we consider the SU(2) sym. matter as the sym. nuclear matter. ’’’’ m ’ ~ -150 MeV @ 0 m ’ ~ -150 MeV @ 0 m ~ +20 MeV @ 0 m ~ +20 MeV @ 0 and ’ mass shifts @ 0 P. Rehberg, et al., PRC53(96)410. parameters (in vacuum) parameters (in vacuum) = 602.3 [MeV] g S 2 = 3.67 g D 5 = -12.36 m u,d = 5.5 [MeV] m s = 140.7 [MeV] M u,d = 367.6 [MeV] M s = 549.5 [MeV] 〈 uu 〉 1/3 = -241.9 [MeV] 〈 ss 〉 1/3 = -257.7 [MeV] m ’ = 958 [MeV] m = 514 [MeV] m = 135 [MeV] We can see the large medium effect even at normal nuclear density. anomaly term effect P. Costa et al.,PLB560(03)171, PRC70(04)025204, etc … 800 200 0 1000 600 400 meson mass [MeV] flat steep
56
56 ’ (958) mesic nuclei by ( ,N) reaction Potential description momentum transfer 0 100 200 300 400 500 Momentum transfer q [MeV/c] 123 4 p [GeV/c] m’m’m’m’ m ’ – 50 MeV m ’ – 100 MeV elementary cross section + n ’ p ( + n ’ p) ~ 100 b R.K.Rader et al., PRD6(72)3059 Real Part V 0 … evaluated by possible ’ mass shift at 0 Imaginary part W 0 … unknown 20 MeV, for example
57
57 ’ -mesic nuclei formation spectra : 12 C target : ( +,p) reaction 0 2.5 2.0 1.5 1.0 0.5 V 0 = −(0, 20i) MeV V 0 = −(150, 20i) MeV with no mass reduction with 150 MeV reduction @ 0 p = 1.8 GeV/c p = 1.8 GeV/c proton angle = 0 deg. proton angle = 0 deg. 0-50-100-15050 0-50-100-15050100 E ex – E 0 MeV case By H. Nagahiro
58
Suppose we have nice data (spectra) …. 1, Mass reduction will be equivalent to attractive V in Eq. of Motion.. 2, But “ Attractive Mass reduction ’’ is wrong. Ex.) Coulomb case. Origin of the attraction is important. Origin of the attraction is important. 3, Both NJL and Optical potential are approximations, describing a (different) part of truth. Then, if the one of them is describing a (different) part of truth. Then, if the one of them is dominant, the interpretation of data could be relatively easier. dominant, the interpretation of data could be relatively easier. 4, η(958)-proton scattering length 〜 0.1fm =>V(0) ~ 10MeV Weak! P. Moskal et al., Phys. Lett. B 482, 356 (2000) [arXiv:nucl-ex/0004006]. P. Moskal et al., Phys. Lett. B 482, 356 (2000) [arXiv:nucl-ex/0004006]. And Oset-Ramos theoretical results, Nanova talk this morning.. And Oset-Ramos theoretical results, Nanova talk this morning.. 5, η(958) seems interesting. With Jido, Nagahiro
59
59 ’ -mesic nuclei formation spectra : 12 C target : ( +,p) reaction 0 2.5 2.0 1.5 1.0 0.5 V 0 = −(0, 20i) MeV V 0 = −(150, 20i) MeV with no mass reduction with 150 MeV reduction @ 0 p = 1.8 GeV/c p = 1.8 GeV/c proton angle = 0 deg. proton angle = 0 deg. 0-50-100-15050 0-50-100-15050100 E ex – E 0 MeV case By H. Nagahiro
60
Pionic atoms at RIBF
61
Deeply Bound Pionic Atom by (d, 3 He) – Data at GSI K. Suzuki et al. Phys. Rev. Lett. 92(2004) 072302 GOR relation + Tomozawa-Weinberg Relation
62
Density Probed by pion – Too much stable….. T. Yamazaki, S. Hirenzaki PLB557(03)20 Peak positions of the overlapping density are almost same for all states. The effective nuclear density e is almost same, e ~ for all states. ee - density Overlapping density Nuclear density Overlappin g R ov peak
63
π atom at RIBF π atom at RIBF Exp. plan by Ito, Itahashi (RIBF-027) 2 ~ 3 times better energy resolution 1s and 2s observation better determination of -A interactions Various ρ probe ? In future, pionic atom in unstable nuclei - Hirenzaki, Kajino, Kubo, Toki, Tanihata, PLB(87) - Hirenzaki, Kajino, Kubo, Toki, Tanihata, PLB(87) - Umemoto, Hirenzaki, Kume, Toki, Tanihata, NPA(01) - Umemoto, Hirenzaki, Kume, Toki, Tanihata, NPA(01) - Fujita, Hirenzaki, Kume, PRC(03) - Fujita, Hirenzaki, Kume, PRC(03) - Kienle, Yamazaki, Toki, ‘ Inverse kinematics idea’ 91~92 - Kienle, Yamazaki, Toki, ‘ Inverse kinematics idea’ 91~92
64
EXPERIENCE at GSI FWHM394kev FWHM394kev THEORY FWHM394kev THEORY FWHM150kev ! 2s peak will be seen. By R. Kimura, N. Ikeno
65
5. Summary Mesic Atoms and Mesic Nuclei Nucleus as Finite Density Laboratory Nucleus as Finite Density Laboratory Exotic Nuclei with Meson impurities Exotic Nuclei with Meson impurities We are interested in … = how to connect to the fundamental theory = how to connect to the fundamental theory = how to get reliable experimental information = how to get reliable experimental information η (958) -Nucleus System η-Nucleus System at JPARC and COSY π-Atom at RIBF Study of meson-nucleus bound states is interesting !! *いつでも研究室に話しを聞きに来て下さい。一緒に国際的な場に出られる仕事をしませんか?比連崎、永廣 (あと、研究で充実しているときの宴会(学会打ち上げとか)は楽し いものですよ(笑))
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.