Presentation is loading. Please wait.

Presentation is loading. Please wait.

Deeply-Bound K-Nuclear States Yoshinori AKAISHI Akinobu DOTE Toshimitsu YAMAZAKI A new paradigm in Nuclear Physics K-K- Atomic states Nuclear state DA.

Similar presentations


Presentation on theme: "Deeply-Bound K-Nuclear States Yoshinori AKAISHI Akinobu DOTE Toshimitsu YAMAZAKI A new paradigm in Nuclear Physics K-K- Atomic states Nuclear state DA."— Presentation transcript:

1 Deeply-Bound K-Nuclear States Yoshinori AKAISHI Akinobu DOTE Toshimitsu YAMAZAKI A new paradigm in Nuclear Physics K-K- Atomic states Nuclear state DA  NE04 June 8, 2004

2 Evidence for K - ppn Oct.16, 2003 M. Iwasaki et al. M. Iwasaki T. Suzuki H. Bhang G. Franklin K. Gomikawa R.S. Hayano T. Hayashi K. Ishikawa S. Ishimoto K. Itahashi T. Katayama Y. Kondo Y. Matsuda T. Nakamura S. Okada H. Outa B. Quinn M. Sato M. Shindo H. So T. Sugimoto P. Strasser K. Suzuki S. Suzuki D. Tomono A.M. Vinodkumar E. Widmann T. Yamazaki T. Yoneyama nucl-ex/0310018 from 4 He(stopped K -,n)

3 Few-Body KN Systems _ Strange baryon Di-baryon Tri-baryon Tetra-baryon Strange heavy nucleus Strange matter pp p p p n n p p n p p n S=-1 S=-2 p  K _ = p p   = H*?

4 DEAR @ DA  NE

5 KN interaction - -62 MeV -285 MeV -436 MeV -412 MeV none KpX Iwasaki et al. (1997) Martin (1981) p+K - n+K 0 -  (1405) -++-++ ++-++- 0+00+0 +0+0 5.3 0 -27 -94.9 -103.0 -104.4 -181.3 (MeV)

6 L.Ya. Glozman, W. Plessas, K. Varga & R.F. Wagenbrunn, Phys. Rev. D 58 (1998) 094030. A Chiral Constituent-Quark Model Lattice QCD quenched to 3Q H. Suganuma et al. Theor Exp N  1.8 1.6 1.4 1.2 1.0 GeV 1.8 1.6 1.4 1.2 1.0 GeV  (1405) Exp Theor  (1385) 

7

8 Optical potential K nucleus _ K - atom for E= -110 MeV for t-matrix: for g-matrix: No Pauli exclusion

9 J. Schaffner-Bielich, V. Koch & M. Effenberger, Nucl. Phys. A669 (2000) 153. A. Ramos & E. Oset, Nucl. Phys. A671 (2000) 481. A. Cieply, E Friedman, A. Gal & J. Mares, Nucl. Phys. A696 (2001) 173. Shallow optical potentialDeep optical potential V 0 +iW 0 = -50 –i 60 MeV V 0 +iW 0 = -120 –i10 MeV Y. Akaishi & T. Yamazaki, Phys. Rev. C65 (2002) 044005. N. Kaiser, P.B. Siegel & W. Weise, Nucl. Phys. A594 (1995) 325.

10

11

12 Nuclear KNN bound states _ T = 3/2 Unbound T = 1/2 Above the  *+n threshold T = 1/2 E = -48 MeV  = 61 MeV S = 0 S = 1 S = 0

13 Structure of ppK - pp K-K- 1.90 fm rms distance 1.36 fm 0.8 0.6 0.4 0.2 0.0 fm -3 02468 r fm 3.90 fm rms distance T. Yamazaki & Y. Akaishi, Phys. Lett. B535 (2002) 70.

14 K - + p 123 r fm 0 -50 -200 -300 -400 -500 MeV  (1405) ++ ++ K - + pp 123 r fm 0 -50 -200 -300 -400 -500 MeV ++ ++ K - + 3 He 123 r fm 0 -50 -200 -300 -400 -500 MeV ++ ++

15 J.K. Ahn, Nucl. Phys. A721 (2003) 715c

16 M.F.M. Lutz & E.E. Kolomeitsev, Nucl. Phys. A700 (2002) 193. J.K. Ahn, Nucl. Phys. A721 (2003) 715c On the  (1405) J.C. Nacher, E. Oset, H. Toki & A. Ramos, Phys. Lett. B455 (1999) 55. 1.31 fm p

17 pp

18 123 r fm 0 -100 -200 -300 -400 MeV ++ (-69, 66) MeV (-86, 32) MeV Nuclear bound state 1.47 fm Free 1.01.21.41.6 1.01.21.41.6 R core fm 40 30 20 10 0 -60 -70 -80 -90 -100 -110 -120 MeV  E core (R core ) E K (R core ) E K +  E core Hasegawa-Nagata’s NN ~1Gev repulsion E 

19

20 0 -50 -100 -150 50 70 90 15 MeV T n MeV 4 He ( stopped K -, n) Branching ~2% M. Iwasaki et al., Nucl. Inst. Meth. A473 (2001) 286. K - + 3 He T = 1 T = 0 -108 MeV E K MeV d+  - +   d+  + +   d+  - +  

21

22 M. Iwasaki et al.B Kppn =173 4 MeV  < 25 MeV M ~ 3137 MeV/c 2 f 1.00  (1405) fit Sch K - ppn K-G EKEK -108 -i10 -119 -i10 B Kppn  116 20 127 (unit in MeV) K-G : Klein-Gordon Sch : Schroedinger  KNN = 12 MeV 1.17 K-G -164 -i 6 11172 44 46 K - ppn

23 pp n K-K- 1.6 fm  N (0) = 6.8  0 ppnK -  B th -ex ~ 50 MeV Chiral restoration ? m K / f 2 udd uud us _ 11 or 9 quarks ? Tri-baryon ?

24 8 Be 8 BeK - 7 fm Density (/fm^3) 0.0 0.41 0.83 Density (/fm^3) 0.0 0.10 0.20 AMD calculation by Dote et al. Dense & Cold

25 T. Hatsuda & T. Kunihiro, Phys. Rev. Lett. 55 (1985) 158. W. Weise, Nucl. Phys. A443 (1993) 59c. 300 MeV 5050 Temperature T Density  Normal density

26 Color forromag. A. Iwazaki et al. 150 MeV Chemical potential Nuclei Temperature Quark-Gluon Plasma Color superconductor (2SC), (CFL) Hadrons Dense & cold Tricritical point Nuclear Phase Diagram Liquid-gas

27 Nucleon density distribution ppnK - pppK - pppnK - 6 BeK - 3 fm 9 BK - 4 fm

28 pppK - pppnK - ppK - Spectral Function 440360400 0 0.0004 0.0008 0.0012

29

30 1.90 fm 1.36 fm pp ppK - 1.3 fm 1.5 fm ppK - K - uuddss us _ uud us _ Strange deuteron? Jaffe’s H* di-baryon? K-K-

31 ppnK -  + d K-K- Cold & dense fragments Heavy-Ion Reaction ~10A GeV High-density environment provided by HI fireball Invariant-mass spectroscopy for their decays “Decay-channel spectroscopy”

32 FOPI at GSI from Kutsche (PhD) 1999 Superb  identification

33 A. Andronic and P. Braun-Munzinger, priv.comm., Oct.17, 2003  > GSI SIS100/300 : best place

34 Concluding Remarks Nuclear K bound state _ Mini strange matter K behaves as a “contractor”. _ A new means to investigate hadron dynamics in dense&cold matter Chiral restoration? Color superconductivity? Kaon condensation? Strange hadronic/quark matter? Few-body K nuclear systems would provide experimental data of fundamental importance for hadron physics with strangeness. _ Formation/Decay- channel spectroscopies DA  NE SPring-8 J-Lab GSI J-PARC


Download ppt "Deeply-Bound K-Nuclear States Yoshinori AKAISHI Akinobu DOTE Toshimitsu YAMAZAKI A new paradigm in Nuclear Physics K-K- Atomic states Nuclear state DA."

Similar presentations


Ads by Google