Presentation is loading. Please wait.

Presentation is loading. Please wait.

Model Evaluation Saed Sayad www.ismartsoft.com.

Similar presentations


Presentation on theme: "Model Evaluation Saed Sayad www.ismartsoft.com."— Presentation transcript:

1 Model Evaluation Saed Sayad

2 Data Mining Steps 1 2 3 4 5 6 www.ismartsoft.com Problem Definition
Data Preparation 3 Data Exploration 4 Modeling 5 Evaluation 6 Deployment

3 Model Evaluation www.ismartsoft.com Evaluation Classification
Confusion Matrix Gain, Lift, ... Charts Regression Mean Squared Error Residuals Chart

4 Classification - Confusion Matrix
Positive Cases Negative Cases CM True Positive False Negative Predicted Positive Predicted Negative

5 Confusion Matrix - Evaluation Measurements
Actual + - TP FP TP+FP FN TN FN+TN TP+FN FP+TN TP+FP+FN+TN Predicted

6 Sensitivity and Specificity

7 Classification – Gain Chart
Target% Wizard 100% Model Random Population% 0% 50% 100%

8 Gain Chart Wizard 100% A 50% Random 10% Target% Population% 10% 18%

9 Gain Chart Score Table Sorted by Score Gain Table Target Score 235 1
235 1 724 556 345 480 676 195 880 368 ... Target Score 1 880 724 676 556 480 368 345 235 195 ... Count% Target% 10 36 20 54 30 66 40 76 50 85 60 90 70 94 80 98 100

10 Classification – Gain Chart
Target% 100% A 85% 76% B 66% 54% 36% Population% 10% 20% % % 50% 100% Copyright iSmartsoft Inc. 2008

11 Lift Chart Gain Table Lift Table Count% Target% 10 36 20 54 30 66 40
76 50 85 60 90 70 94 80 98 100 Count% Lift 10 3.6 20 2.7 30 2.2 40 1.9 50 1.7 60 1.5 70 1.3 80 1.2 90 1.1 100 1 Copyright iSmartsoft Inc. 2008

12 Lift Chart Lift Population%

13 K-S Chart (Kolmogorov-Smirnov)
Score Range Count Cumulative Count Lower Upper Target Non-Target K-S 100 3 62 0.5% 0.8% 0.3% 200 23 1.1% 0.6% 300 1 66 0.7% 2.0% 1.3% 400 7 434 7.7% 5.7% 500 181 5627 34.3% 81.7% 47.4% 600 112 886 54.3% 93.3% 39.0% 700 83 332 69.1% 97.7% 28.6% 800 45 63 77.1% 98.5% 21.4% 900 29 37 82.3% 99.0% 16.7% 1000 99 77 100.0% 0.0% K-S K(0.95) = 6.0%    K(0.99) = 7.1% 

14 K-S Chart Count% Score

15 ROC Chart (Receiver Operating Characteristic)
Count% False Positive Rate (1-Specificity) True Positive Rate (Sensitivity) 10 0.1 0.66 20 0.2 0.79 30 0.3 0.86 40 0.4 0.91 50 0.5 0.94 60 0.6 0.95 70 0.7 0.98 80 0.8 90 0.9 0.99 100 1.0 1.00

16 ROC Chart Sensitivity 1-Specificity

17 Regression – Mean Squared Error

18 Regression – Relative Squared Error

19 Regression – Mean Absolute Error

20 Regression – Relative Absolute Error

21 Regression – Standardized Residuals Plot

22 Questions?


Download ppt "Model Evaluation Saed Sayad www.ismartsoft.com."

Similar presentations


Ads by Google