Download presentation
Presentation is loading. Please wait.
Published bySilvia Copeland Modified over 8 years ago
1
14/06/2007Hayg GULER (LLR)1 ATF2 line studies with BDSIM using two different beam inputs parameters
2
14/06/2007Hayg GULER (LLR)2 BDSIM Choice particle type (e-,e+, gamma) Choice energy, input parameters Sampler : “record” positions (after the selected element). Create one TTree each time ( possibilities to see a Z dependence for example) BDSIM Options: option,physicsList hadronic_standard em_muon em_standard Options, beam characteristics (beam pipe radius )
3
14/06/2007Hayg GULER (LLR)3 ATF2 V3.6 (Gaussian input) σ x = 32.1 10 -5 m σ y = 7.66 10 -7 m σ x’ = 1.64 10 -6 σ y’ = 8.99 10 -8 σ E = 0.001 GeV
4
14/06/2007Hayg GULER (LLR)4 Energy loss No Energy loss No creation of secondary particles too perfect (?) Other option to switch on ?
5
14/06/2007Hayg GULER (LLR)5 Beam parameters (x) One distribution after each element No secondary particles (… !)
6
14/06/2007Hayg GULER (LLR)6 Beam Parameters (y)
7
14/06/2007Hayg GULER (LLR)7 Beam parameter as a function of Z
8
14/06/2007Hayg GULER (LLR)8 Beam parameter as a function of Z
9
14/06/2007Hayg GULER (LLR)9 Using input file from PLACET Which parameters are in ? Correlations are already in ? At least secondary particles (photons and positrons are created !)
10
14/06/2007Hayg GULER (LLR)10 Energy loss Energy loss seems to be included In the case of Gaussian input beam the parameters might be not correct
11
14/06/2007Hayg GULER (LLR)11 Beam parameters (x)
12
14/06/2007Hayg GULER (LLR)12 Beam Parameters (y)
13
14/06/2007Hayg GULER (LLR)13 Beam parameter as a function of Z
14
14/06/2007Hayg GULER (LLR)14 Beam parameters (x) Gaussian FIT
15
14/06/2007Hayg GULER (LLR)15 Beam parameter as a function of Z (zoom)
16
14/06/2007Hayg GULER (LLR)16 Beam parameter as a function of Z
17
14/06/2007Hayg GULER (LLR)17 Beam parameters (y) Gaussian FIT
18
14/06/2007Hayg GULER (LLR)18 Beam parameter as a function of Z (zoom)
19
14/06/2007Hayg GULER (LLR)19 Beam Parameters extraction From x and y distributions we extracted σ x and σ y From x and x’ distributions one can extract ε x : And then : extraction of the function : β x =
20
14/06/2007Hayg GULER (LLR)20 Gaussian input : X
21
14/06/2007Hayg GULER (LLR)21 Gaussian input : Y
22
14/06/2007Hayg GULER (LLR)22 PLACET input : X
23
14/06/2007Hayg GULER (LLR)23 PLACET input : Y
24
14/06/2007Hayg GULER (LLR)24 Open points, Next Studies Gaussian distribution in BDSIM : What is wrong/correct (?) BDSIM + PLACET : See if the secondary generation is correct (in andtities and distribution) Compare to other codes (optical : Dimad ?) Use other input parameters (from ATF)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.