Presentation is loading. Please wait.

Presentation is loading. Please wait.

Muon Rare Decay at PRISM Masaharu Aoki Osaka University KEKNP01 December 10-12, 2001, KEK.

Similar presentations


Presentation on theme: "Muon Rare Decay at PRISM Masaharu Aoki Osaka University KEKNP01 December 10-12, 2001, KEK."— Presentation transcript:

1 Muon Rare Decay at PRISM Masaharu Aoki Osaka University KEKNP01 December 10-12, 2001, KEK

2 Dec 10-12, 2002KEKNP01, M. Aoki2 Outline Introduction –LFV –What is PRISM |  L i |=1 Processes –  -e Conversion in nuclei |  L i |=2 Processes – Muonium-antimuonium conversion The recent experiment Activation method at PRISM –      Conversion Theoretical background Conceptual design Concluding Remarks

3 Dec 10-12, 2002KEKNP01, M. Aoki3 LFV with low-energy muons

4 Dec 10-12, 2002KEKNP01, M. Aoki4 PRISM (=Phase Rotation Intense Slow Muon source) not in scale

5 Dec 10-12, 2002KEKNP01, M. Aoki5 PRISM Features Higher muon intensity –10 11 -10 12  - /sec Pulsed beam (>100 Hz) –background rejection Narrow energy spread (±0.5-1.0 MeV) –thinner muon-stopping target better e - resolution and acceptance point source Low momentum muon (=68 MeV/c) –Less scattering backgrounds Less beam contamination –no pion contamination long flight path at FFAG (150 m) –beam extinction between pulses kicker magnet at FFAG entrance –pure charge state

6 Dec 10-12, 2002KEKNP01, M. Aoki6        -e Conversion in nuclei

7 Dec 10-12, 2002KEKNP01, M. Aoki7 Flavor Physics flavor mixing –nondiagonal elements of the mass matrices quark lepton (neutrino) slepton squark normal particles SUSY particles ex. K-decays, B-decays ex. neutrino oscillation ex. charged lepton LFV sensitive to slepton mixing

8 Dec 10-12, 2002KEKNP01, M. Aoki8 SU(5) SUSY-GUT prediction SO(10) SUSY-GUT prediction –enhanced by (m  /m  ) 2 (=100) from SU(5) prediction SUSY-GUT Prediction goal f t (M)=2.4  M 1 =50 GeV f t (M)=2.4  M 1 =50 GeV

9 Dec 10-12, 2002KEKNP01, M. Aoki9 SUSY with RH Majorana neutrino a la Nomura and Hisano

10 Dec 10-12, 2002KEKNP01, M. Aoki10 PRIME  PRIsm Muon-Electron conversion experiment –PRIME and MECO

11 Dec 10-12, 2002KEKNP01, M. Aoki11 Muon Decay in Orbit Muon decay in orbit (  (E  e -E e ) 5 ) – E e > 103.9 MeV –  E e = 350 keV – N BG ~ 0.17 @ R=10 -18 present limit MECO goal PRIME goal signal

12 Dec 10-12, 2002KEKNP01, M. Aoki12 Momentum Resolution Momentum resolution simulation 100 keV sigma (240 keV FWHM) 25  200  m Al 750 keV FWHM @MECO 20  50  m Ti

13 Dec 10-12, 2002KEKNP01, M. Aoki13 Muon Stopping Target Simulation for Ti 65 MeV/c 2% width –Correlation to momentum Ti target of 1 mm thickness Will stop 80 % of the netgativemuons ! Ten times better than MECO. Further improvement of Momentum spread will improve more.

14 Dec 10-12, 2002KEKNP01, M. Aoki14 Event Displays Event 1 Event 2 target

15 Dec 10-12, 2002KEKNP01, M. Aoki15 Backgrounds (1) Radiative  capture N BG <0.1(@R=10 -16 )  decay in flight N BG <10 -4 (@R=10 -16 ) –Long flight length (150m) 30 m FFAG circumference  5 turns –Double kicker injection at the FFAG entrance Low momentum (~68 MeV/c) –Additional extinction by the kicker << 10 -4 –Absolutely no pions Sweep out all pions

16 Dec 10-12, 2002KEKNP01, M. Aoki16 Radiative muon capture N BG <0.01(@R=10 -16 ) –Endpoint energy for Ti = 89.7 MeV Signal = 104.3 MeV –Better e - net momentum resolution Thin muon stopping targets Beam electrons and muon decay in flight N BG <0.02(@R=10 -16 ) N BG <0.007(@R=10 -16 ) –Kinematically not allowed E e = 68 ± 2 MeV/c < 103.9 MeV E  = 68± 2 MeV/c < 77 MeV/c Cosmic ray N BG <0.004(@R=10 -16 ) –<1 MHz (low duty factor) Less beam contamination, less junk trigger Anti-proton –Absorber at the FFAG entrance Backgrounds (2)

17 Dec 10-12, 2002KEKNP01, M. Aoki17 PRIME Rate Issue 10 4 ~10 5 times larger than that in MECO MECO : 1 MHz PRIME : 100 Hz Spiral Solenoid Spectrometer Space separation –Large Acceptance (>41%) –Large DIO Rejection (>10 9 ) low detector rate (<10 per pulse) Electron Accumulator RING (EARING) Time separation –Electron storage ring –Slow extraction to a detector

18 Dec 10-12, 2002KEKNP01, M. Aoki18 Spiral Solenoid Spectrometer a la Sasao

19 Dec 10-12, 2002KEKNP01, M. Aoki19      2 Muonium-antimuonium conversion and  -  Conversion in nuclei

20 Dec 10-12, 2002KEKNP01, M. Aoki20 Muonium-Antimuonium Conversion Doubly charged Higgs boson Heavy Majorana neutrinos A neutral scalar SUSY Bilepton

21 Dec 10-12, 2002KEKNP01, M. Aoki21 Mu-AntiMu: PSI Experiment

22 Dec 10-12, 2002KEKNP01, M. Aoki22 Mu-AntiMu: Activation Method(1) No active devices Requirements –Absolutely no  - contamination –No pion contamination TRIUMF –T.M. Huber, et al. Phys. Rev. D 41 (1990) 2709-2725

23 Dec 10-12, 2002KEKNP01, M. Aoki23 Mu-AntiMu: Activation Method(2) Sensitivity –Small, but could be improved by more than an order of magnitude T.M. Huber, et al. Phys. Rev. D 41 (1990) 2709-2725

24 Dec 10-12, 2002KEKNP01, M. Aoki24 Mu-AntiMu: Activation Method(3) Mu-Antimu with PRISM

25 Dec 10-12, 2002KEKNP01, M. Aoki25   -   Conversion muonic atom (1s state) –nuclear muon capture  - + (A,Z)    –muon decay in orbit  -  e   –Exotic processes |  L i | = 1 –  - + (A,Z)  e   –  - + (A,Z)  e   |  L i | = 2 –  - + (A,Z)    Experimental status –Direct measurement → NOT EXIST –Indirect measurement → Kaon decay BR(K +        ) < 3.0  10 -9 –Which corresponds to BR(   A   A ) < 10 -12 –L.S. Littenberg and R. Shrock, PLB 491(2000)285-290

26 Dec 10-12, 2002KEKNP01, M. Aoki26   -   Conv. : Physics(1) J.H.Missimer, R.N. Mohapatra and N.C. Mukhopadhyay, PRD50(1994)2067-2070 For examples R 5 = 10 -18  muonic version of  decay   -diagonal of    A  e + A conversion

27 Dec 10-12, 2002KEKNP01, M. Aoki27   -   Conv. : Physics(2) E. Takasugi(Osaka Univ.) –neutrino oscillation |M| ~ double beta decay BR ~ 10 -41

28 Dec 10-12, 2002KEKNP01, M. Aoki28   -   Conv.: Choice of Target  - + (A,Z)    –T = M(Z,A) - M(Z,A-2) - 2m e - E  (1S) > 0 No candidate from stable isotopes 44 Ti(  -,  + ) 44 Ca   ( 44 Ti) = 47 years 72 Se(  -,  + ) 72 Ge   ( 44 Se) = 8.4days 82 Sr(  -,  + ) 82 Kr   ( 44 Sr) = 25days –J.H.Missimer, R.N. Mohapatra and N.C. Mukhopadhyay, PRD50(1994)2067-2070 44 Ti(  -,  + ) 44 Ca –M(Z,A) - M(Z,A-2) = 3.92 MeV –E  (1S) = 1.28 MeV –T = 1.62 MeV p  = 18.5 MeV/c  = 0.17

29 Dec 10-12, 2002KEKNP01, M. Aoki29   -   Conv.: Production of Target Natural abundance = ZERO !! Production process : 45 Sc(p,2n) 44 Ti – 45 Sc =100% –Production cross section Maximum @ E p = 30 MeV  max  = 63 mb Yield –Target Material : Sc –Target volume : 0.5 cm 3 –Proton beam : 50 MeV, 10mA Upstream section of JHF linac (DTL) –10 days of irradiation 0.3% of whole Sc material could be transformed to 44 Ti

30 Dec 10-12, 2002KEKNP01, M. Aoki30   -   Conv.: Signal and Backgrounds Radioactive Target –> 100 Ci / g Very low energy  + emision –T = 1.62 MeV Very small final state phase space factor –Small energy –Large Coulomb distortion Fermi function, F = 0.028 –Relative phase space factor to (  ,e + ) is only 4.8  10 -3 Opposite charged final state –  - + (A,Z)    Huge amount of backgrounds –Radiation from 44 Sc –Muon decay orbit 44 Ti(  -,  + ) 44 Ca

31 Dec 10-12, 2002KEKNP01, M. Aoki31   -   Conv.: How to detect Catching  +  e   –E e = 0 ~ 52 MeV –Enormous amount of background from e +  - + (A,Z)    –R(radiative capture / capture) = 10 -4 –Target thickness 50  m »R = 10 -7 direct measurement of  + –T = 1.68 MeV Very low energy muon Target thickness should be < a few 100  m High Brightness High Intensity Muon Beam –Separation of e +- is necessary

32 Dec 10-12, 2002KEKNP01, M. Aoki32   -   Conv.: Conceptual Design Surface Muon Beam Channel

33 Dec 10-12, 2002KEKNP01, M. Aoki33   -   Conv.: Sensitivity  - Beam from PRISM –10 12 /sec –  p/p = ±2.0 % Target –50  m Sc0.015 g/cm 2 Muon stopping fraction = 4% – 44 Ti concentration 0.3% 0.3% of   would be trapped in 44 Ti  + acceptance (0.4%) –Beam line acceptance 50 msr –  p/p = 10% Beam Time –1 nominal year10 7 sec R < 2  10 -13

34 Dec 10-12, 2002KEKNP01, M. Aoki34   -   Conv.: Comparison with K   A  e  A –BR < 1.7  10 -12 PSI BR(K +      e  ) < 10 -11 –BR(K +      e  ) < 5.0  10 -10 BNL-E865 –BR(   A  e  A) < 10 -16 BNL-MECO K +    e    e  –BR < 6.4  10 -10 BNL-E865 –0 2  decay |  j U ei 2  j | < 0.4 eV –“Many orders of magnitude less than Kaon data” K +       –BR < 3.0  10 -9 BNL-E865 Which corresponds to BR(   A   A ) < 10 -12 –BR < 10 -12 FNAL-CKM Which corresponds to BR(   A   A ) < 5  10 -16 L.S. Littenberg and R. Shrock, PLB 491(2000)285-290

35 Dec 10-12, 2002KEKNP01, M. Aoki35 Concluding Remarks PRISM –PRISM will provide a high-intensity high-quality muon beam for vaious rare muon decay experiments. It is mainly designed for  -e conversion experiment, but can also provide good opportunity to the |  L i |=2 physics.  -e Conversion –BR(  A -> eA ) ~ 10 -18 Mu-AntiMu –G Mu-AntiMu < 10 -4 G F  - -  + conversion –R < 2  


Download ppt "Muon Rare Decay at PRISM Masaharu Aoki Osaka University KEKNP01 December 10-12, 2001, KEK."

Similar presentations


Ads by Google