Presentation is loading. Please wait.

Presentation is loading. Please wait.

Theory of Elasticity 弹性力学 Chapter 7 Two-Dimensional Formulation 平面问题基本理论.

Similar presentations


Presentation on theme: "Theory of Elasticity 弹性力学 Chapter 7 Two-Dimensional Formulation 平面问题基本理论."— Presentation transcript:

1 Theory of Elasticity 弹性力学 Chapter 7 Two-Dimensional Formulation 平面问题基本理论

2 ChapterPage Content (内容) 11 1.Introduction (概述) 2.Mathematical Preliminaries (数学基础) 3.Stress and Equilibrium (应力与平衡) 4.Displacements and Strains (位移与应变) 5.Material Behavior- Linear Elastic Solids (弹性应力应变关系 ) 6.Formulation and Solution Strategies (弹性力学问题求解) 7.Two-Dimensional Formulation (平面问题基本理论) 8.Two-Dimensional Solution (平面问题的直角坐标求解) 9.Two-Dimensional Solution (平面问题的极坐标求解) 10.Three-Dimensional Problems (三维空间问题) 11.Bending of Thin Plates (薄板弯曲) 12.Plastic deformation – Introduction (塑性力学基础) 13.Introduction to Finite Element Mechod (有限元方法介绍)

3 Chapter Page Two-Dimensional Formulation 7.1 Plane Stress and Plane Strain ( 平面应力和平面应变 ) 7.2 Displacement Formulation ( 位移求解 ) 7.3 Stress Formulation and Airy Stress Function ( 应力求解与应力函数 ) 7.4 Photoelastic stress measurement ( 光弹应力测试 ) 7 2

4 Chapter Page 7.1 Plane Stress (平面应力) z =±h, are stress free h, is small in comparison to other dimensions Not only on the surface, but also throughout the entire domain. ( 整个实体 ) 7 3 Example: thin elastic plate( 弹性薄板 )

5 Chapter Page 7.1 Plane Stress (平面应力) Hooke’s law strain-displacement equations The equilibrium equations (平衡方程) 7 4 Field equations( 基本方程 )

6 7.1 Plane Strain (平面应变) Chapter Page all cross-sections have identical displacements (横截面位移相同) 3-D2-D (1)A prismatic body whose length is much larger than any in-plane dimension,. (2)In-plane loads are independent of the out-of- plane coordinate z. (3)Absence of normal strain, in a direction perpendicular to the plane. 7 5 Example: long cylindrical body ( 长圆柱体 )

7 Chapter Page 7.1 Plane Strain (平面应变) Plain Strain Examples 7 6

8 7.1 Plane Strain (平面应变) Chapter Page Hooke’s lawstrain-displacement equations the equilibrium equations 7 7 Field equations( 基本方程 )

9 7.1 Plane Stress and Plane Strain Chapter Page  x  y  xy  x  y  xy Plane “Stress” 6 component, 3 are zero Plane “Strain” 6 component, 3 are zero Difference 7 8

10 7.1 Plane Stress and Plane Strain Chapter Page Plain Stress 平面应力问题 Plain Strain 平 面应变问题 非平面问题 Not Plain Problem 7 9 Problems :

11 Chapter Page 7.2 Displacement Formulation ( 位移法 ) Displacements Formulation ( Navier equations for plane stress ) + 7 10 (B.C.)

12 Chapter Page + 7 11 Displacements Formulation ( Navier equations for plane strain ) 7.2 Displacement Formulation ( 位移法 ) (B.C.)

13 Chapter Page 7.3 Stress Formulation ( 应力法 ) Stress Formulation ( for plane stress ) + or + 7 12 (B.C.)

14 7.3 Stress Formulation ( 应力法 ) Chapter Page Stress Formulation ( for plane strain ) + or + 7 13 (B.C.)

15 7.3 Stress Formulation ( 应力法 ) Chapter Page Difference in solution the equilibrium equations ( 平衡方程 ) Compatibility Equations (相容方程) Which factor causes the difference? 7 14 Plain Strain Plain Stress

16 7.3 Stress Formulation ( 应力法 ) Chapter Page The difference in Physical Equation between Plain Stress and Plain Strain 7 15 Plain StressPlain Strain

17 7.3 Stress Formulation ( 应力法 ) Chapter Page Plain Stress Plain Strain Plain Strain Plain Stress 7 16

18 7.3 Airy Stress Function (应力函数) Chapter Page Solution of plain problems( 平面问题的应力求解 ) Single Connected ( 单连通域 ) 7 17 Plain Strain Plain Stress 3 unknowns Solution is not easy employs the Airy stress function Single unknown

19 7.3 Airy Stress Function (按应力求解) Chapter Page 方程的解 非齐次方程的特解 齐次方程通解 7 18 全解 = 齐次方程通解+ + 非齐次方程的特解。

20 Chapter Page 7.3 Airy Stress Function (应力函数) 由微分方程理论,必存在一函 数 A(x,y) ,使得 也必存在一函数 B(x,y) ,使得 由微分方程理论,必存在一函 数 φ (x,y) ,使得 齐次方程的通解 7 19

21 7.3 Airy Stress Function (应力函数) Chapter Page 通解 特解 满足相容方程 + 边界条件+单值条件 biharmonic equation 7 20

22 7.3 Airy Stress Function (应力函数) 15 unknowns including 3 displacements, 6 strains, and 6 stresses. 3 D 2 D 1 unknowns Chapter Page 7 21

23 7.4 Photoelastic stress Measurement ( 光弹应力测试 ) Chapter Page Solution of plain problems (平面问题的应力求解) Single Connected ( 单连通域 ) Stress distribution doesn’t depend on material constants Photoelastic stress measurement ( 光弹应力测试 ) 7 22

24 7.4 Photoelastic stress Measurement ( 光弹应力测试 ) Chapter Page Photoelastic experiment (光弹性实验) 7 23 光程差模型厚度主应力差值

25 7.4 Photoelastic stress Measurement ( 光弹应力测试 ) Chapter Page 7 24 Example:

26 7.4 Photoelastic stress Measurement ( 光弹应力测试 ) Chapter Page 7 25

27 7.4 Photoelastic stress Measurement ( 光弹应力测试 ) Chapter Page 7 26 Example: indirect tension test (ASTM D-4123 1987) bituminous and other brittle materials such as concrete, asphalt, rock, and ceramics.

28 7.4 Photoelastic stress Measurement ( 光弹应力测试 ) Chapter Page 7 27 Example:

29 7.4 Photoelastic stress Measurement ( 光弹性测试 ) Chapter Page 7 28 Example: FEM

30 7.4 Photoelastic stress Measurement ( 光弹性测试 ) Chapter Page 7 29 Example: granular (颗粒状) materials

31 7.4 Photoelastic stress Measurement ( 光弹性测试 ) Chapter Page 7 30 Example: Photoelastic studies of the stress distribution around the tip of a crack

32 Vocabulary( 词汇 ) Chapter Page 6 31 Plane stress Plane strain Photoelastic stress measurement Airy Stress Function biharmonic equation 平面应力 平面应变 光弹应力测试 艾里应力函数 双调和方程

33 Homework Chapter Page 7 32 思考题: 6 - 1 6 - 5


Download ppt "Theory of Elasticity 弹性力学 Chapter 7 Two-Dimensional Formulation 平面问题基本理论."

Similar presentations


Ads by Google