Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Paris MEGAPOLI campaign to better quantify fine aerosol sources and formation in a tertiary type mid-latitude Megacity M. Beekmann 1, A. S. H. Prevot.

Similar presentations


Presentation on theme: "The Paris MEGAPOLI campaign to better quantify fine aerosol sources and formation in a tertiary type mid-latitude Megacity M. Beekmann 1, A. S. H. Prevot."— Presentation transcript:

1 The Paris MEGAPOLI campaign to better quantify fine aerosol sources and formation in a tertiary type mid-latitude Megacity M. Beekmann 1, A. S. H. Prevot 2, F. Drewnick 3, J. Sciare 4, S. N Pandis 5, H. A. C. Denier van der Gon 6, M. Crippa 2, F. Freutel 3, L. Poulain 7, V. Ghersi 8, E. Rodriguez 9, S. Beirle 3, A. Borbon 1, V. Gros 4, A. Wiedensohler 7, M. G Lawrence 3, A. Baklanov 10, U. Baltensperger 2 and the MEGAPOLI Paris- campaign team 1 LISA/IPSL, France, 2 PSI, Switzerland. 3 MPI for Chemistry, Germany. 4 LSCE/IPSL, France. 5 FORTH, Greece. 6 TNO, The Netherlands, 7 IfT, Germany. 8 AIRPARIF, France, 9 FMI, Finnland, 10 DMI, Denmark. I nternational Global Atmospheric Chemistry (IGAC) 17th~21st, September, Beijing, China

2 Context: Large uncertainties on primary and secondary organic, carbonaceous aerosol sources Emissions, source sectors ?

3 Context: Large uncertainties on primary and secondary organic, carbonaceous aerosol sources Emissions, source sectors ? Processes ? Primary organic aerosol (POA) semivolatile POA and SOA can be oxidised (aging), -> not accounted for in many current CTM’s

4 Context: Large uncertainties on primary and secondary organic, carbonaceous aerosol sources Emissions, source sectors ? Processes ? Primary organic aerosol (POA) semivolatile POA and SOA can be oxidised (aging), -> not accounted for in many current CTM’s Budgets ? Local versus advective sources for Megacities Impact of Megacities on surrounding regions

5 MEGAPOLI Paris campaign objectives Paris agglomeration (12 million inhabitants) as an example of tertiary type, mid-latitude, continental megacity Provide new experimental data within the agglomeration and in its plume => to better quantify primary and secondary organic aerosol sources => link of SOA formation with gas phase precursors Summer (July) 2009 campaign Winter (January 15 – Febraury 15 2010) campaign Paris

6 Instrumentation set-up and parameters measured * In situ ** Gases: *** pollution tracers: CO, O3, NOx, NOy, *** aerosol precursors: (O)VOC (cartridges, PTR-MS….), H2SO4 *** radical budget : OH, HO2, HONO, J’s ** Aerosol *** mass, size and number *** physical properties (volatility, optical, hygroscopicity) *** chemical composition: OA components and individual species, BC, dust, ions, … **** rapid AMS, PILS, MAAP, ECOC, single particle AMS **** detailed (filters with ~100 individual compounds) ** Dynamic (wind, T, turbulent fluxes, …) * Remote ** spectroscopic -> gas columns (NO2, CO, O3,…..) ** Lidar (backscatter, partly multi-  polarized) ** wind profils (sodar, lidar)

7 The geographical set-up Additionnal one year round daily PM2.5 mass closure measurements Urban and rural background (French Particules project)

8 The geographical set-up

9 PM 1 chemical composition – winter campaign Jan 15 – Feb15 / 2010 AMS measurements at the three MEGAPOLI primary sites LHVP SIRTA GOLF Crippa et al., 2012 ACPD, special Megapoli Paris campaign issue TOTAL PM1 average ~ 17 - 18 µg/m3 Sulfate Nitrate Ammonium Black carbon Chloride Organic Jan 15 / 2010Feb15 / 2010 16 µgm -3 1,2 µgm -3 10 µgm -3 20 µgm -3 30 µgm -3

10 PM 2.5 mass closure from PILS IC+ EC-OC Courtesy J. Sciare, LSCE  Continental origin for major aerosol peak during winter camapign Retro plume calculation with FLEXPART by A. Stohl, NILU http://zardoz.nilu.no/~andreas/ BACKWARD_PRODUCTS/ MEGAPOLI/

11  Continental origin for major aerosol peaks during winter camapign PM 2.5 mass closure from PILS IC+ EC-OC Courtesy J. Sciare, LSCE Retro plume calculation by A. Stohl, NILU http://zardoz.nilu.no/~andreas/ BACKWARD_PRODUCTS/ MEGAPOLI/

12  Continental origin for major aerosol peaks during winter camapign PM 2.5 mass closure from PILS IC+ EC-OC Courtesy J. Sciare, LSCE

13  Continental origin for major aerosol peaks during winter camapign PM 2.5 mass closure from PILS IC+ EC-OC Courtesy J. Sciare, LSCE

14 14 [PM 2.5 ] PARIS = [PM 2.5 ] urban - [PM 2.5 ] rural Local versus Regional contribution of PM 2.5 Results from the Particules campaign September 2009 – September 2010 Courtesy J. Sciare, LSCE Subtractive approach

15 Local versus Imported Contribution to PM2.5 At Paris urban downtown site, September 2009 – August 2010 average  ~70 % of PM2.5 is imported from outside the agglomeration Courtesy H. Petetin Lisa/Airparif, J. Sciare, M. Bressi, LSCE, V.Ghersi +Airparif team Advected contribution Local contribution

16 Local versus Imported Contribution to PM2.5 At Paris urban downtown site, September 2009 – August 2010 average  ~70 % of PM2.5 is imported from outside the agglomeration  even more for large PM2.5 concentrations  PM2.5 variability is mainly advection controlled Courtesy H. Petetin Lisa/Airparif, J. Sciare, M. Bressi, LSCE, V.Ghersi +Airparif team Advected contribution Local contribution

17 Diurnal cycles of organic aerosols sources MEGAPOLI winter SIRTALHVP GOLF Primary : cooking =11-17% (35% for meal hours) traffic=11-13%; woodburning=13-16%; Secondary : 22- 36% woodburning unidentified non-fossil 34-38% Courtesy M. Crippa, A.Prevot, PSI, Switzerland From Positive Matrix Factorization of Aerosol Mass Spectrometer measurements 8 µgm -3 0 µgm -3 Hour of the day

18 Fossil fuel vs. non fossil carbonaceous aerosol (PM1) Non-fossil fuel C => major fraction Fossil fuel C => minor fraction Courtesy P. Zotter, PSI, 14 C measurements S. Szidat, Univ. Bern AMS source apportionnement => SOA is of major non-fossil origin

19 BiasRMSER +1.17 µg/m3 (+28.4%) 4.02 µg/m3 (97.6%) 0.22 OA µg/m3 Organic aerosol modelling CHIMERE CTM 1) Standard version POA non volatile SOA formation from single step VOC oxidation POA major simulated OA fraction Courtesy Q.J. Zhang, LISA ; Aria Technologies France T i m e s e r i e s J u l y 2 0 0 9 Observations Simulated POA

20 BiasRMSER 1.17 (28.4%)4.02 (97.6%)0.22 BiasRMSER -0.47 µg/m3 (-14.2%) 2.04 µg/m3 (61.7%) 0.79 OA µg/m3 Organic aerosol modelling CHIMERE CTM 2) Volatility basis set POA volatile POA + ASOA + BSOA chemical aging Better agreement Less POA More SOA Biogenic (BSOA) Anthropogenic (ASOA) Oxidized POA Simulated Biogenic (BSOA) Anthropogenic (ASOA) Oxidized POA T i m e s e r i e s J u l y 2 0 0 9

21 Paris plume developement ( July 16) ATR-42 Airborne observed OA µg/m3 CHIMERE simulated OA µg/m3 Courtesy for aircraft AMS data E. Freney, LaMP France for O3 +NO2 data, SAFIRE, A.Colomb, LISA, now LaMP Ox (O 3 +NO 2 ) in ppb OA in µg m -3 Observed OA vs. OX slope (similar to Mexico city CALNEX, Pasadena) Simulated CHIMERE-VBS

22 Simulation of Paris polluant plume - CHIMERE Black carbonSecondary organic aerosol Simulations CHIMERE-VBS Q.J. Zhang, LISA/CNRS

23 More on this on poster P-2-034 “In-plume secondary pollutants formation from the Greater Paris region and its impact to surrounding regions » ZHANG Qijie et al.

24 Typical concentrations of BC (black) and EC (grey) observed in megacities across the world. Courtesy H. D. van der Gon Is the local pollution contribution to the Paris agglomeration smaller than for other megacities ? µgm -3

25 HOx Sources Budget during MEGAPOLI / summer (SW agglomeration edge = SIRTA) => Radical production is strongly impacted by (net) HONO photolysis during MEGAPOLI summer campaign at SIRTA site. From HOx radical chemical closure measurements, and Obsevationnal constraint 0D modelling with the MCM mechanism Michoud et al; 2012, ACPD Daily evaluation of HOx production rate

26 Some major conclusions Major part of fine PM levels (~70% for PM2.5) in the Paris agglomeration are transported from outside; PM variability is largely advection controled Major part of carbonaceous aerosol (60% in summer, 80% in summer is of non-fossil fuel origin: strong biogenic SOA contribution in summer, strong wood burning source in winter, cooking activities in both seasons Significant antropogenic secondary organic and inorganic aerosol build-up in the paris plume VBS scheme implementation into CHIMERE CTM allows « satisfying » POA / SOA modelling for MEGAPOLI summer campaign, but still many uncertainties

27 Organisation / Participants I nitial FP7 partners : CNRS (LISA, LSCE, GAME-CNRM, LaMP, LGGE, subcontractor SAFIRE), PSI, IfT, FORTH, Univ. Helsinki Additional European Participants : MPI, Univ. Duisburg, FMI Additional French Participants : AIRPARIF, CEREA, Ecole de Mines Douai, INERIS, LATMOS, LCME, LCP-IRA, LEOSPHERE, LMD, LHVP, LPMAA, QUALAIR, SIRTA/LMD/IPSL Logistical support SIRTA, LHVP, Golf de la Poudrière Forecast PREVAIR www.prevair.orgwww.prevair.org Support from FP7 / MEGAPOLI national agencies ANR Progamme Blanc Programme INSU -LEFE-CHAT / ADEME Ile de France l

28 Data are available at French Ether facility ~100 data sets (http://ether.ipsl.jussieu.fr/megapoli)http://ether.ipsl.jussieu.fr/megapoli Thanks to all participants !

29 Acknowledgements MEGAPOLI team M. Beekmann 1, U. Baltensperger 2, A. Borbon 1, J. Sciare 3, V. Gros 3, A. Baklanov 4, M. Lawrence 5, S. Pandis 6, V.Kostenidou 6, M.Psichoudaki 6, L. Gomes 7, P. Tulet 7, A. Wiedensohler 8, A. Held *, L. Poulain 8, K.Kamilli 8, W. Birmli 8, A. Schwarzenboeck 9, K. Sellegri 9, A. Colomb 9, J.M. Pichon 9, E.Fernay 9, J.L. Jaffrezo 10, P. Laj 10, C. Afif 1, V. Ait-Helal 1 *, B. Aumont 1, S. Chevailler 1, P. Chelin 1, I. Coll 1, J.F. Doussin 1, R. Durand-Jolibois 1, H. Mac Leod 1, V. Michoud 1, K. Miet 1, N. Grand 1, S. Perrier 1, H. Petetin 1, T. Raventos 1, C. Schmechtig 1, G. Siour 1, C. Viatte 1, Q. Zhang 1 **, P. Chazette 3, M. Bressi 3, M. Lopez 5, P. Royer 3, R. Sarda-Esteve 3, F. Drewnick 5, J. Schneider 5, M. Brands 5, S. Bormann 5, K. Dzepina 5, F. Freutel 5, S. Gallavardin 5, T. Klimach 5, T. Marbach 5, R. Shaiganfar 5, S.L. von der Weiden- Reinmüller 5, T. Wagner 5, S. R. Zorn 5, J. Fachinger 5, J. Diesch 5, S.L. von der Weiden 5, A. Roth 5, T. Böttger 5, J. Schmale 5, P. Reitz 5, P. De Carlo 2, A. Prevot 2, M. Crippa 2, C. Mohr 2, Marie Laborde 2, M. Gysel 2, Roberto Chirico 2, Maarten Heringa 2, A. Butet 11, A. Bourdon 11, E. Mathieu 11, T. Perrin 11, SAFIRE team, J.Wenger 12, R. Healy 12, I.O. Connor 12, E. Mc Gillicuddy 12, P. Alto 13, J.P.Jalkanen 13, M. Kulmala 13, P Lameloise 14, V. Ghersi 14, O. Sanchez 14, A. Kauffman 14, H. Marfaing 14, C. Honoré 14, L. Chiappini 15, O. Favez 15, F. Melleux 15, G. Aymoz 15, B. Bessagnet 15, L. Rouil 15, S. Rossignol 15, M. Haeffelin 16, C. Pietras 16, J. C. Dupont 16, and the SIRTA team, S. Kukui 17, E. Dieudonné 17, F. Ravetta 17, J.C.Raut 17,G. Ancellet 17, F. Goutail 17, J.L Besombes 18, N. Marchand 19, Y. Le Moullec 20, J. Cuesta 21,Y.Te 21, N. Laccoge 22, S. Lolli 23, L. Sauvage 23, S.Loannec 23, D. Ptak 24, A. Schmidt 24, S. Conil 25, M. Boquet 26, 1 Laboratoire InterUniversitaire des Systèmes Atmosphériques (LISA), Université Paris Est et 7, CNRS, Créteil, France, 2 Paul Scherrer Institut, Villingen, Switzerland, 3 Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Gif sur Yvette, France,, 4 Danish Meteorological Institute, Copenhagen, Denmark, 5 Max-Planck-Institute for Chemistry, Mainz, Germany, 6 Foundation for Research and Technology, Hellas, University of Patras, Greece, 7 Game,Centre National de Recherche Météorologique, Toulouse, France, 8 Institut für Troposphärenforschung, Leipzig, Germany, 9 Laboratoire de Météorologie Physique, Clermont-Ferrand, France, 10 Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France, 11 SAFIRE, Toulouse, France, 12 University College Cork, Ireland, 13 University Helsinki, Finland, 14 AIRPARIF, Paris, France, 15 INERIS, France,, 16 SIRTA/IPSL, Palaiseau, France, 17 Laboratoire Atmosphères, Milieux, Observations Spatiales, Paris, France,, 18 Laboratoire de Chimie Moléculaire et Environnement, Chambery, France, 19 Laboratoire de Chimie Provence, Marseille, France, 20 Laboratoire de l’Hygiène de la Ville de Paris, France,, 21 Laboratorie de Météorologie Dynamique, Palaiseau, France, 22 Département Environnement et Chimie, Ecole de Mines de Douais, France,,, 23 LEOSPHERE, France, 24 Universität Duisburg-Essen), Germany, 25 ANDRA, Châtenay-Malabry, France, 26 CEREA, Marne La Vallée, France, **also ARIA-Technologie. France

30 AOD (Aerosol Optical Depth) from the AATSR (Advanced Along Track Scanning Radiometer instrument) average over the period March – October 2009. => No AOD, but NO2 gradient over the Paris agglomeration Courtesy E. Rodriguez, FMI, S. Beirle MPI tropospheric NO 2 columns from SCIAMACHY observations Paris

31 Sub-urban Golf site average in July in July 2009 from AMS + MAAP measurements by MPI for Chemistry Mainz Absolute PM1 concentration in µg m -3 fraction in % OOA Secondary fraction HOA Primary fraction Organic aerosol Nitrates Sulfates Ammonium Black carbon Secondary aerosol is predominant in summer, even in urban source region Traffic + other sources TOTAL July PM1 average ~ 6 µg/m3 => clean! July 2009 mean PM1 composition


Download ppt "The Paris MEGAPOLI campaign to better quantify fine aerosol sources and formation in a tertiary type mid-latitude Megacity M. Beekmann 1, A. S. H. Prevot."

Similar presentations


Ads by Google