Download presentation
Presentation is loading. Please wait.
Published byMyron Cody Perry Modified over 8 years ago
1
Limit theorems for the number of multiple edges in the configuration graph Irina Cheplyukova Karelian Research Centre of Russian Academy of Sciences chia@krc.karelia.ru
2
CONFUGURATION MODEL B,Bollobas (1980). A Probabilistic proof of an asymptotic formula for the number of labeled regular graphs. European Journal of Combinatorics. Vol.1. P. 311-316. model with fixed degree sequence M.Molloy and B.Reed (1995). A critical point for random graphs given degree sequence. Random Structures and Algorithms. Vol.6. P.161-179. model with independent identically distributed vertex degrees M.E.J. Newman, S.H. Strogatz, D.J. Watts.(2001) Random graphs with arbitrary degree distribution and their applications, Phys. Rev. E 64 026118. A.-L. Barabasi, R. Albert.(1999) Emergence of scaling in random network, Science 286, P.509-512. Faloutsos C., Faloutsos P.,Faloutsos M. (1999) On power-law relationships of the internet topology. Computer Communications. Rev. 29. P. 251−262.
3
1 0 2 3 4 5 6 H. Reittu, I. Norros (2004). On the power-law random graph model of massive data networks. Performance Evaluation. 55, 3-23.
4
Erdös P., Rényi A.Erdös P., Rényi A. (1960) On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. Vol.5. P. 17−61. Hofstad R., Hooghiemsra G., Znamenski D.Hofstad R., Hooghiemsra G., Znamenski D. (2007) Distances in random graphs with finite mean and infinite variance degrees. Electronic Journal of Probability. Vol.12. P.703−766. Janson S., Luczak T., Rucinski A.Janson S., Luczak T., Rucinski A. (2000) Random graphs. New York: Wiley, 348p. Pavlov Yu.L. Pavlov Yu.L. (2007) On power-law random graphs and branching processes. Proceedings of the Eight International Conference CDAM. Minsk: Publishing center BSU. Vol.1. P. 92−98.
5
Bollobas B.( 1980 ) A probabilistic proof of an asymptotic formula for the number of labeled regular graphs. European Journal of Combinatorics. Vol.1. P. 311−316.
6
Hofstad R. Random graphs and complex networks. 2011.
7
The first configuration graph
8
Power-law random graph Aiello W., Chung F., Lu L. A random graph model for power-law graphs. Experiment Math., 10, 1, 2001, 53-66. Newman M.E.J., Strogats S.H., Wats D.J. Random graphs with arbitrary degree distribution and their appliсations. Phys. Rev. E., 64, 026118, 2000.
9
The second random graph
10
Yu.Pavlov, M.Stepanov. Limit distribution of the number of loops in a random graph. (2013) Proceeding of Steklov Institute of Mathematics. Volume 282. Issue 1. Pp.209-219.
16
Thanks for your attention.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.