Download presentation
Presentation is loading. Please wait.
Published byAlaina MargaretMargaret Craig Modified over 8 years ago
1
Drell-Yan Studies in ppbar Reactions at FAIR Marco Destefanis Università degli Studi di Torino 43 rd PANDA Collaboration Meeting GSI, Darmstadt (Germany) December 10-14, 2012 for the PANDA Collaboration
2
Overview Motivation Drell-Yan cross section and azimuthal asymmetries Drell-Yan process and background @ PANDA A. Bianconi Drell-Yan generator Investigation of Drell-Yan asymmetries Summary
3
Motivation Complete description of the nucleonic structure requires: ➠ Parton Distribution Functions (PDF) ➠ Fragmentation Functions (FF) Including k T dependence ➠ Transverse Momentum Dependent (TMD) PDF and FF ➠ Test of Universality J. C. Collins and D. E. Soper, Nucl. Phys. B 194, 445 (1982)
4
Helicity base Twist-2 PDFs: - δq(x) helicity flip off diagonal in the helicity base
5
Transversity δq(x): a chirally-odd, helicity flip distribution function δg(x): no gluon transversity distribution; transversely polarised nucleon shows transverse gluon effects at twist-3 (g 2 ) only SOFFER INEQUALITY An upper limit: can be violated by factorisation at NNLO inequality preserved under evolution to larger scales only
6
TMD: K T -dependent Parton Distributions Twist-2 PDFs Distribution functions Chirality even odd Twist-2 ULTULT,h1,h1, Transversity Boer-Mulders Sivers
7
TMD PDF Investigation ➠ Process SIDIS → convolution with FF Drell-Yan → PDF only pp annihilations: each valence quark can contribute to the diagram ➠ Energies @ FAIR unique energy range up to s~30 GeV 2 with PANDA up to s~200 GeV 2 with PAX @ much higher energies → big contribution from sea-quarks
8
Drell-Yan Process Drell-Yan: pp -> + - X Collins-Soper frame Kinematics x 1,2 = mom fraction of parton 1,2 = x 1 x 2 = M 2 /s x F = x 1 - x 2 Collins-Soper frame: Phys. Rev. D16 (1977) 2219.
9
Drell-Yan Process Gives access to chirally odd functions Transversity No convolution with FF Chirally odd functions are not suppressed (as in DIS)
10
QCD higher order contributions s=45 GeV 2 s=210 GeV 2 s=45 GeV 2 s=210 GeV 2 cross section affected K-factors almost spin independent H. Shimizu et al., Phys. Rev. D71 (2005) 114007
11
QCD contributions to A TT Contributions drop increasing the energy [1] [1] H. Shimizu et al., Phys. Rev. D71 (2005) 114007
12
Perturbative Corrections Smaller at higher energies [1] [1] H. Shimizu et al., Phys. Rev. D71 (2005) 114007
13
Double Spin Asymmetries @ s = 30, 45 GeV 2 A TT small at large √s and M 2 due to slow evolution of h 1 a (x,Q 2 ) Large A TT expected [1] for √s and M 2 not too large and τ not too small [2] M. Anselmino et al., Phys. Lett. B594 (2004) 97. [1] Shimizu et al., Phys.Rev.D 71 (2005) 114007. [3] Efremov et al, Eur. Phys. J. C 35 (2004) 207. Q 2 = 5 GeV 2 Q 2 = 9 GeV 2 Q 2 = 16 GeV 2
14
NLO pQCD: λ 1, 0, υ 0 Lam-Tung sum rule: 1- λ = 2ν reflects the spin-½ nature of the quarks insensitive top QCD-corrections Experimental data [1] : υ 30 % [1] J.S.Conway et al., Phys. Rev. D39 (1989) 92. Di-Lepton Rest Frame Drell-Yan Asymmetries
15
Conway et al, Phys. Rev. D39 (1989) 92 E615 @ Fermilab -N + - X @ 252 GeV/c -0.6 < cos < 0.6 4 < M < 8.5 GeV/c 2 Angular distribution in CS frame
16
Conway et al, Phys. Rev. D39 (1989) 92 30% asymmetry observed for - E615 @ Fermilab -N + - X @ 252 GeV/c Angular distribution in CS frame
17
NA10 coll., Z. Phys. C37 (1988) 545 NA10 @ CERN -N + - X @ 286 GeV/c Deuterium Tungsten Nuclear effects?
18
NA10 @ CERN [1] λ, μ, ν measured in π N→μ + μ – X υ involves transverse spin effects at leading twist [2] If unpolarised DY σ is kept differential on k T, cos2φ contribution to angular distribution provide: [1] NA10 coll., Z. Phys. C37 (1988) 545 Violation of Lam-Tung sum rule [2] D. Boer et al., Phys. Rev. D60 (1999) 014012.
19
[1] L. Zhu et al, PRL 99 (2007) 082301; [1] D. Boer, Phys. Rew. D60 (1999) 014012. Boer-Mulders T-odd Chiral-odd TMD ν > 0 → valence h 1 has same sign in π and N ν(π - W→μ + μ - X) ~ h 1 (π) valence x h 1 (p) valence ν(pd→μ + μ - X) ~ h 1 (p) valence x h 1 (p) sea ν > 0 → valence and sea h 1 has same sign, but sea h 1 should be significantly smaller [1] Drell-Yan Asymmetries
20
λ 1, 0 Even unpolarised beam on polarised p, or polarised on unpolarised p are powerful tools to investigate к T dependence of QDF D. Boer et al., Phys. Rev. D60 (1999) 014012.
21
SINGLE-POLARISED UNPOLARISED. DOUBLE-POLARISED Drell-Yan Cross Section R.D. Tangerman and P.J. Mulders, Phys. Rev. D51, 3357-3372 (1995)
22
Azimuthal Asymmetries Unpolarized Single polarized Double polarized U = N(cos2φ>0) D = N(cos2φ<0) Asymmetry
23
CERN NA51 450 GeV/c Fermilab E866 800 GeV/c Di-Lepton Production pp -> l + l - X A. Baldit et al., Phys. Lett. 332-B, 244 (1994) R.S. Towell et al., Phys. Rev. D 64, 052002 (2001)
24
Phase space for Drell-Yan processes x 1,2 = mom fraction of parton 1,2 = x 1 x 2 x F = x 1 - x 2 = const: hyperbolae x F = const: diagonal PAX @ HESR symmetric HESR collider 1 1.5 GeV/c 2 ≤ M ≤ 2.5 GeV/c 2 PANDA
25
Drell-Yan Process and Background Background studies: needed rejection factor of 10 7 Drell-Yan: pp -> + - X cross section 1 nb @ s = 30 GeV 2 Background: pp -> + - X, 2 + 2 - X,…… cross section 20-30 b m = 105 MeV/c 2 ; m 145 MeV/c 2 average primary pion pairs: 1.5
26
A. Bianconi Drell-Yan Generator for pp Antiproton beam Polarized/Unpolarized beam and target Drell-Yan cross section from experimental data Selects event depending on the variables: x 1, x 2, P T,, , S from a flat distribution Cross section: A. Bianconi, Monte Carlo Event Generator DY_AB4 for Drell-Yan Events with Dimuon Production in Antiproton and Negative Pion Collisions with Molecular Targets, internal note (PANDA collaboration) A. Bianconi, M. Radici, Phys. Rev. D71, 074014 (2005) & D72, 074013 (2005) A. Bianconi, Nucl.Instrum.Meth. A593: 562-571, 2008
27
DY @ 15 GeV/c — pp-> + - X layout studies for muon id with ABDYG (1.5 MEv) A. Bianconi Drell-Yan Generator [1] A. Bianconi and M. Radici, Phys. Rev. D71 (2005) 074014 [1] GeV Dilepton Mass Distribution M dilepton [GeV/c 2 ] Focus on one single M range 1.5 MEv in 1.5 < M < 2.5 (GeV/c 2 ) σ 0 4≤M≤9 ~ 0.4 pb σ 0 1.5≤M≤2.5 ~ 0.8 nb xPxP xPxP x2x2 x1x1
28
DY Asymmetries @ Vertex UNPOLARISEDSINGLE-POLARISED 500KEv included in asymmetries Acceptance corrections crucial! 1 < q T < 2 GeV/c 2 < q T < 3 GeV/c xPxP xPxP xPxP xPxP xPxP xPxP Physics Performance Report for PANDA arXiv:0903.3905
29
R = L ·σ· ɛ = 2·10 32 cm -2 s -1 × x 0.8·10 -33 cm 2 × 0.33 = 0.05 s -1 ~ 130 Kev/month Statistical errors for 500KEv generated xPxP ) ) xPxP xPxP Physics Performance Report for PANDA arXiv:0903.3905 DY Asymmetries @ Vertex
30
Summary New physics from unpolarized DY Wide Single Spin Asymmetry program Double Spin Asymmetries, if p can be polarized Few months of data taking are enough to: evaluate unpolarised and single-spin asymmetries with good accuracy investigate their dependence on q T, μμ Next step: Polarized Antiprotons
31
Backup Slides
32
Primary beams: Proton Heavy Ions Factor 100-1000 over present in intensity Future GSI and Facility for Antiproton and Ion Research Secondary Beams: Radioactive beams Antiprotons 3 - 30 GeV 1-2 10 7 /s Storage and Cooler Rings: Radioactive beams e – A collider 10 11 stored and cooled 0.8 - 14.5 GeV antiprotons
33
High Energy Storage Ring HESR High res. mode: L = 10 31 cm -2 s -1 p/p < 10 -5 High lum. mode: L = 2·10 32 cm -2 s -1 p/p < 10 -4 Cooling: electron/stochastic P max = 15 GeV/c L max = 2·10 32 cm -2 s -1 Ø < 100 m p/p < 10 -5 internal target Characteristics 10 11 stored and cooled 0.8-15 GeV/c antiprotons
34
HESR: asymmetric collider layout Asymmetric double-polarised collider mode proposed by PAX: APR (Antiproton Polariser Ring): polarising antiprotons, p > 0.2 GeV/c CSR (Cooled Synchrotron Ring): polarised antiprotons, p = 3.5 GeV/c HESR: polarised protons, p = 15 GeV/c
35
The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv:0903.3905
36
The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv:0903.3905 Detector requirements: nearly 4 solid angle(partial wave analysis) high rate capability(2·10 7 annihilations/s) good PID( , e, , , K, p) momentum resolution(~1%) vertex info for D, K 0 S, (cτ =123 m for D 0, p/m ≈ 2) efficient trigger(e, , K, D, ) no hardware trigger(raw data rate ~ TB/s)
37
The PANDA Physics Confinement Why are there no free quarks? Hadron mass Where is the mass of the proton coming from? Are there other color neutral objects? What is the structure of the nucleon? What are the spin degrees of freedom? J. Ritman, Status of PANDA, 8th International Workshop on Heavy Quarkonium 2011
38
Meson spectroscopy: D mesons charmonium glueballs, hybrids, tetraquarks, molecules Charmed and multi-strange baryon spectroscopy Electromagnetic processes (pp → e + e -, pp → , Drell-Yan) Properties of single and double hypernuclei Properties of hadrons in nuclear matter The PANDA Physics
39
The PANDA Potential All J PC allowed for qq are accessible in pp T. Johansson, PANDA at FAIR, Excited QCD 2012, Peniche (Portugal) Formation J PC not allowed for qq possible Production
40
Cherenkov Polarized Antiproton eXperiments Asymmetric collider (√s=15 GeV): polarized protons in HESR (p=15 GeV/c) polarized antiprotons in CSR (p=3.5 GeV/c) The PAX Detector V. Barone et al., Technical Proposal for PAX, 2005 http://www2.fz- juelich.de/ikp/pax/portal /index.php?id=103
41
The PAX Experiment A. Nass, “Spin Filtering at COSY and Perspectives for PAX”, Section S6-II G. Ciullo, “Polarization of Stored Beam by Spin Filtering at COSY”, Section S6-II E. Steffens, “Dual H&D Cavity for the PAX Target Polarimeter”, Section S6-II
42
Helicity base Twist-2 PDFs: 1/2 L L + R R q(x) spin averaged
43
1/2 L L - R R Δq(x) helicity difference Helicity base Twist-2 PDFs:
44
DIS Process RHIC energies: √s = 100 GeV -> τ ≤ 10 -2 -> small x 1 and/or x 2 Too small Soffer upper bound on A TT (percent level [1] ) A TT @ RHIC very small, smaller √s would help [2] [1] Martin et al, Phys.Rev. D60 (1999) 117502. [2] Barone, Colarco and Drago, Phys.Rev. D56 (1997) 527.
45
DIS Process RHIC energies: √s = 100 GeV -> τ ≤ 10-2 -> small x 1 and/or x 2 Too small Soffer upper bound on A TT (percent level [1] ): A TT @ RHIC very small, smaller √s would help [2] [1] Martin et al, Phys.Rev. D60 (1999) 117502. [2] Barone, Colarco and Drago, Phys.Rev. D56 (1997) 527.
46
Expected polar distributions E772 @ Fermilab λ, μ, ν measured [1] in p N → μ + μ - X Perfect agreement with pQCD exptectations! [1] McGaughey, Moss, JCP, Annu. Rev. Nucl. Part. Sci. 49 (1999) 217.
47
E537 @ Fermilab Anassontzis et al., Phys. Rev. D38 (1988) 1377 Expected polar distributions
48
[1] L. Zhu et al, PRL 99 (2007) 082301; [1] D. Boer, Phys. Rew. D60 (1999) 014012. Boer-Mulders T-odd Chiral-odd TMD ν > 0 → valence h 1 has same sign in π and N ν(π - W→μ + μ - X) ~ h 1 (π) valence x h 1 (p) valence ν(pd→μ + μ - X) ~ h 1 (p) valence x h 1 (p) sea ν > 0 → valence and sea h 1 has same sign, but sea h 1 should be significantly smaller [1] Drell-Yan Asymmetries
49
Transverse Single Spin Asymmetries # of partons in polarized proton depends on PDF X X partons’ polarisation in unpolarized proton depends on FF X Hadrons’ polarisation coming from unpolarised quarks depends on X fragmentation of polarised quark depends on
50
Transverse Single Spin Asymmetries All those terms contribute to the Single Spin Asymmetry
51
MDT layoutMDT cross section Muon Detector System Iarocci Tubes working in proportional mode Ar+CO 2 gas mixture Prototype ready FE electronics in production TDR for the PANDA Muon System, 2 nd Draft (May 2011) JINR - Dubna
52
Muon Detector Layout MDT’sWiresStrips Barrel21331706449916 End Cap61849448911 Muon Filter42433926876 Forward Range System57646087128 Total37513000872831 Range System Prototype JINR - Dubna
53
The Road to Polarized Antiprotons
54
How to polarize antiprotons? Intensity loss, but it works H. Ströher, PoS(STORI11) 030 D. Oellers, PoS(STORI11) 008 Spin filtering Λbar decay Not feasible Not enought intensity Spin flip Spin dependent reaction Under study
55
Experimental setup H. Ströher, PoS(STORI11) 030 D. Oellers, PoS(STORI11) 008
56
Beam Polarimenter pd elastic scattering detection in two (L-R) symmetric Silicon Tracking Telescopes Deuteron separation H. Ströher, PoS(STORI11) 030 D. Oellers, PoS(STORI11) 008
57
Results – Beam Polarization Measurements after a storing period of 5000 s H. Ströher, PoS(STORI11) 030 D. Oellers, PoS(STORI11) 008 Polarization lifetime: τ p > 10 5 s Spin-flip efficiency: 0.9887 ± 0.0001
58
High Energy Storage Ring Electron cooler E<8 GeV Injection HESR High res. mode: L = 10 31 cm -2 s -1 p/p < 10 -5 High lum. mode: L = 2·10 32 cm -2 s -1 p/p < 10 -4 Cooling: electron/stochastic P max = 15 GeV/c L max = 2·10 32 cm -2 s -1 Ø < 100 m p/p < 10 -5 internal target Characteristics 70 m 185 m 10 11 stored and cooled 0.8-15 GeV/c antiprotons Detector
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.