Download presentation
Presentation is loading. Please wait.
Published bySimon Powell Modified over 8 years ago
1
Chapter 17 Mechanical Waves & Sound
2
Waves A repeating disturbance or movement that transfers energy through matter or space. A wave will travel as long as it has energy.
3
Mechanical Waves Mechanical Wave: is a disturbance in matter that carries energy from one place to another. Mechanical waves require matter to travel Medium: is a material (matter) that mechanical waves travel through solid liquid or gas. Ex. Air, water, aluminum, copper, The speed of mechanical waves changes with different mediums
4
Mechanical wave is created when a source of energy causes a vibration to travel through a medium Vibration: a repeating motion that follows a pattern Sound is created by vibrations Vocal cords
5
There are 3 types of mechanical waves Transverse waves Longitudinal waves/ Compressional Surface waves Longitudinal Transverse
6
Transverse waves: is a wave that causes the medium to vibrate at right angles (perpendicular) to the direction in which the wave travels Up & Down, or Side to Side motion Draw a picture of a transverse wave Ex. Water Rope Slinky Electromagnetic (radio waves, infrared, etc)
7
B. Transverse Waves Transverse Waves medium moves perpendicular to the direction of wave motion
8
Crest: is the highest point above the resting position (top of the wave) Trough: is the lowest point below the resting position (bottom of the wave) Resting position: is the flat position of a wave before it starts moving Slinky demo
9
B. Transverse Waves Wave Anatomy crests troughs wavelength amplitude corresponds to the amount of energy carried by the wave nodes
11
Longitudinal waves: is a wave in which the vibration of the medium travels parallel to the direction of the wave\ Slinky demo Compression: a part of a longitudinal wave where the particles are pushed closely together Rarefaction: a part of a longitudinal wave where the particles are spaced farther apart
12
C. Longitudinal Waves Longitudinal Waves (a.k.a. compressional) medium moves in the same direction as wave motion movie
13
C. Longitudinal Waves Wave Anatomy rarefaction compression wavelength Amount of compression corresponds to amount of energy AMPLITUDE.
14
Draw a longitudinal wave Ex. of longitudinal waves Sound
15
Surface wave: is a wave that has characteristics of both transverse and longitudinal waves Up & down movement like a transverse Parallel movement of energy like longitudinal Ex. Ocean Waves Earthquakes (waves through Earth’s surface)
17
Properties of Waves Periodic Motion: is motion that follows a repeating pattern Period: the time period for one interval of movement Frequency: is the number of complete cycles that pass a point in a given amount of time Frequency of waves are measured in hertz (Hz)
18
types of waves video types of waves video
19
Wavelength: is the distance of a complete cycle (either crest to crest or trough to trough) Long wavelength = low frequency Short wavelength = high frequency
20
D. Measuring Waves Frequency ( f ) # of waves passing a point in 1 second Hertz (Hz) shorter wavelength = higher frequency = higher energy 1 second
21
D. Measuring Waves Velocity ( v ) speed of a wave as it moves forward depends on wave type and medium v = wave λ × f V:velocity (m/s) λ:wavelength (m) ƒ: frequency (Hz)
22
ν λ ƒ ÷ ×
23
WORK: v = λ × f v = (3.2 m)(0.60 Hz) v = 1.92 m/s D. Measuring Waves EX: Find the velocity of a wave in a wave pool if its wavelength is 3.2 m and its frequency is 0.60 Hz. GIVEN: v = ? λ= 3.2 m f = 0.60 Hz λ v f
24
WORK: f = v ÷ λ f = (5000 m/s) ÷ (417 m) f = 12 Hz D. Measuring Waves EX: An earthquake produces a wave that has a wavelength of 417 m and travels at 5000 m/s. What is its frequency? GIVEN: λ = 417 m v = 5000 m/s f = ? λ v f
25
Wave Speed = wavelength X frequency Wave speed changes in different mediums If waves are traveling the same speed, then wavelength and frequency are INDIRECTLY related
26
Amplitude: is the distance from the resting position to either a crest or trough Energy and amplitude are DIRECTLY related High energy = high amplitude Low energy = low amplitude Amplitude in sound is called volume
27
Light waves travel faster than sound Sound waves travel faster in liquids and solids than gas Light waves travel faster in gases and vacuums than in liquids an solids.
28
Behavior of Waves Reflection: is when a wave bounces off a surface it can not pass through Reflection does not change the speed or frequency (the wave can be flipped upside down or side to side) Ex. Mirror Law of Reflection: the angle of incidence (incoming wave) = the angle of reflection (outgoing wave) All waves can be reflected The reflection of sound is called an echo
29
reflection
30
Reflection terms normal
31
Refraction: is the bending of a wave as it enters a new medium Ex. light waves Ruler in a beaker of water Ex. sound waves Listening to sound underwater
32
Diffraction: is the bending of a wave as is moves around an obstacle or passes through a narrow opening Page 510 Eddy: is an area behind a mid-stream boulder where the water flows in a reverse direction (provides safety for rafters) Chute: is an area of a river where the water is constricted to a narrow passage
33
diffraction
35
Constructive Interference: is when 2 or more waves combine to form a wave with a larger displacement (amplitude)
36
Destructive interference: is when 2 or more waves combine to form a wave with a smaller displacement (amplitude) add together
37
Standing wave: is wave or waves that appear to stay in the same place Plucking a guitar string Waves in a river Node: is the point on a standing wave where there is no displacement (amplitude) Antinodes: are the crests and the troughs on a standing wave
38
17.4 Sound Waves Sound waves are longitudinal waves The speed of sound changes due to different types of mediums Chart p 514 Speed: is the distance traveled in a certain amount of time Meters/second: m/s
39
Sound Waves Echolocation and Dolphin discovery
40
Intensity: depends on the amplitude (volume) and the distance from the source Decibels: (dB) is the unit for sound intensity Chart on 515 Damage to ears around 120 dB
41
Frequency: is the number of wave cycles to pass a given point in one second Measured in hertz (Hz) Pitch: is the perceived frequency of sound Different notes in music All the different notes have a unique frequency
42
Ultrasound: use sound to locate objects or create pictures SONAR, fish finders, radar Animals use “echo-location” Bats, dolphins, whales Pregnant ladies get ultra sounds to check the baby’s health
43
Doppler Effect: pitch changes due to the object creating the sound moving closer or farther away Pic on 516
44
B. Human Hearing sound wave vibrates ear drum amplified by bones converted to nerve impulses in cochlea
45
Human Ear Picture on 517 Outer ear: the collect and funnel the sound waves into the middle ear Middle ear: amplifies the vibrations Inner ear: are where nerve endings receive and send the signal to the brain The brain interprets those signals as sound
46
Resonance: waves of the same frequency combine (constructive interference) amplifies the sound Resonance can also cause things to vibrate Every object has a natural frequency, if a sound wave with the same frequency hits it, it will cause the object to vibrate
47
B. Resonance Resonance special case of forced vibration object is induced to vibrate at its natural frequency
48
B. Resonance “Galloping Gertie” The Tacoma Narrows Bridge Disaster Wind through a narrow waterway caused the bridge to vibrate until it reached its natural frequency.
49
C. Harmonics Fundamental the lowest natural frequency of an object Overtones multiples of the fundamental frequency
50
Galloping Gertie http://www.youtube.com/watch?v=lXyG68_ca V4&feature=relatedhttp://www.youtube.com/w atch?v=lXyG68_caV4&feature=relatedhttp://www.youtube.com/w atch?v=lXyG68_caV4&feature=related
51
Seismic waves Seismic waves are the waves of energy caused by the sudden breaking of rock within the earth or an explosion. They are the energy that travels through the earth and is recorded on seismographs. Compression and Transversal
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.