Presentation is loading. Please wait.

Presentation is loading. Please wait.

Umans Complexity Theory Lectures Lecture 9b: Pseudo-Random Generators (PRGs) for BPP: - Hardness vs. randomness - Nisan-Wigderson (NW) Pseudo- Random Generator.

Similar presentations


Presentation on theme: "Umans Complexity Theory Lectures Lecture 9b: Pseudo-Random Generators (PRGs) for BPP: - Hardness vs. randomness - Nisan-Wigderson (NW) Pseudo- Random Generator."— Presentation transcript:

1 Umans Complexity Theory Lectures Lecture 9b: Pseudo-Random Generators (PRGs) for BPP: - Hardness vs. randomness - Nisan-Wigderson (NW) Pseudo- Random Generator

2 2 Hardness vs. randomness We have shown: If one-way permutations exist then BPP   δ>0 TIME(2 n δ ) ( EXP time) simulation is better than brute force, but just barely stronger assumptions on difficulty of inverting OWF lead to better simulations…

3 3 Hardness vs. randomness We will show: If E requires exponential size circuits then BPP = P by building a different generator from different assumptions. E =  k DTIME(2 kn )

4 4 Hardness vs. randomness BMY: for every δ > 0, G δ is a PRG with seed length t = m δ output length m error ε < 1/m d (all d) fooling size s = m e (all e) running time m c running time of simulation dominated by 2 t

5 5 Hardness vs. randomness To get BPP = P, would need t = O(log m) BMY building block is one-way- permutation: f:{0,1} t → {0,1} t required to fool circuits of size m e (all e) with these settings a circuit has time to invert f by brute force! can’t get BPP = P with this type of PRG

6 6 Hardness vs. randomness BMY pseudo-random generator: –one generator fooling all poly-size bounds –one-way-permutation is hard function –implies hard function in NP  coNP New idea (Nisan-Wigderson): –for each poly-size bound, one generator –hard function allowed to be in E =  k DTIME(2 kn )

7 7 Comparison BMY: 8 δ > 0 PRG G δ NW: PRG G seed length t = m δ t = O(log m) running time t c mm c output length mm error ε < 1/m d (all d) ε < 1/m fooling size s = m e (all e) s = m << >

8 8 NW PRG NW: for fixed constant δ, G = {G n } with seed length t = O(log n) t = O(log m) running time n c m c output length m = n δ m error ε < 1/m fooling size s = m Using this PRG we obtain BPP = P –to fool size n k use G n k/δ –running time O(n k + n ck/δ )2 t = poly(n)

9 9 NW PRG First attempt: build PRG assuming E contains unapproximable functions Definition: The function family f = {f n }, f n :{0,1} n  {0,1} is s(n)-unapproximable if for every family of size s(n) circuits {C n }: Pr x [C n (x) = f n (x)] ≤ ½ + 1/s(n).

10 10 One bit Suppose f = {f n } is s(n)-unapproximable, for s(n) = 2 Ω(n), and in E a “1-bit” generator family G = {G n }: G n (y) = y◦f log n (y) Idea: if not a PRG then exists a predictor that computes f log n with better than ½ + 1/s(log n) agreement; contradiction.

11 11 One bit Suppose f = {f n } is s(n)-unapproximable, for s(n) = 2 δn, and in E a “1-bit” generator family G = {G n }: G n (y) = y◦f log n (y) –seed length t = log n –output length m = log n + 1 (want n δ ) –fooling size s  s(log n) = n δ –running time n c –error ε  1/ s(log n) = 1/ n δ

12 12 Many bits Try outputting many evaluations of f: G(y) = f(b 1 (y))◦f(b 2 (y))◦…◦f(b m (y)) Seems that a predictor must evaluate f(b i (y)) to predict i-th bit Does this work?

13 13 Many bits Try outputting many evaluations of f: G(y) = f(b 1 (y))◦f(b 2 (y))◦…◦f(b m (y)) predictor might notice correlations without having to compute f but, more subtle argument works for a specific choice of b 1 …b m

14 14 Nearly-Disjoint Subsets Definition: S 1,S 2,…,S m  {1…t} is an (h, a) design if –for all i, |S i | = h –for all i ≠ j, |S i  S j | ≤ a {1..t} S1S1 S2S2 S3S3

15 15 Nearly-Disjoint Subsets Lemma: for every ε > 0 and m < n can in poly(n) time construct an (h = log n, a = εlog n) design S 1,S 2,…,S m  {1…t} with t = O(log n).

16 16 Nearly-Disjoint Subsets Proof sketch: –pick random (log n)-subset of {1…t} –set t = O(log n) so that expected overlap with a fixed S i is εlog n/2 –probability overlap with S i is > εlog n is at most 1/n –union bound: some subset has required small overlap with all S i picked so far… –find it by exhaustive search; repeat n times.

17 17 The Nisan-Wigderson ( NW) Pseudo-Random Generator f  E s(n)-unapproximable, for s(n) = 2 δn S 1,…,S m  {1…t} (log n, a = δlog n/3) design with t = O(log n) G n (y)=f log n (y |S 1 )◦f log n (y |S 2 )◦…◦f log n (y |S m ) 010100101111101010111001010 f log n : seed y

18 18 The NW generator Theorem (Nisan-Wigderson): G={G n } is a pseudo-random generator with: –seed length t = O(log n) –output length m = n δ/3 –running time n c –fooling size s = m –error ε = 1/m

19 19 The NW generator Proof: –assume does not ε-pass statistical test C = {C m } of size s: |Pr x [C(x) = 1] – Pr y [C( G n (y) ) = 1]| > ε –can transform this distinguisher into a predictor P of size s’ = s + O(m): Pr y [P(G n (y) 1 … i-1 ) = G n (y) i ] > ½ + ε/m

20 20 The NW generator Proof (continued): Pr y [P(G n (y) 1 … i-1 ) = G n (y) i ] > ½ + ε/m –fix bits outside of S i to preserve advantage: Pr y’ [P(G n (  y’  ) 1 … i-1 ) = G n (  y’  ) i ] > ½ + ε/m  G n (y)=f log n (y |S 1 )◦f log n (y |S 2 )◦…◦f log n (y |S m ) 010100101111101010111001010 f log n : y ’ SiSi

21 21  The NW generator Proof (continued): –G n (  y’  ) i is exactly f log n (y’) –for j ≠ i, as vary y’, G n (  y’  ) j varies over 2 a values! –hard-wire up to (m-1) tables of 2 a values to provide G n (  y’  ) 1 … i-1 G n (y)=f log n (y |S 1 )◦f log n (y |S 2 )◦…◦f log n (y |S m ) 010100101111101010111001010 f log n : y ’ SiSi

22 22 The NW generator G n (y)=f log n (y |S 1 )◦f log n (y |S 2 )◦…◦f log n (y |S m ) 010100101111101010111001010 f log n : P output f log n (y ’) y’y’ size m + O(m) + (m-1)2 a < s(log n) = n δ advantage ε/m=1/m 2 > 1/s(log n) = n -δ contradiction hardwired tables

23 23 The NW generator Theorem (NW): if E contains 2 Ω(n) -unapp- roximable functions then BPP = P. How reasonable is unapproximability assumption? Hope: obtain BPP = P from worst-case complexity assumption –try to fit into existing framework without new notion of “unapproximability”


Download ppt "Umans Complexity Theory Lectures Lecture 9b: Pseudo-Random Generators (PRGs) for BPP: - Hardness vs. randomness - Nisan-Wigderson (NW) Pseudo- Random Generator."

Similar presentations


Ads by Google