Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.

Similar presentations


Presentation on theme: "Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell."— Presentation transcript:

1 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Chapter 20 Biotechnology

2 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: The DNA Toolbox Sequencing of the human genome was completed by 2007 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant DNA, nucleotide sequences from two different sources, often two species, are combined in vitro into the same DNA molecule

3 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings DNA Cloning and Its Applications: A Preview Most methods for cloning pieces of DNA in the laboratory share general features, such as the use of bacteria and their plasmids Plasmids are small circular DNA molecules that replicate separately from the bacterial chromosome Cloned genes are useful for making copies of a particular gene and producing a protein product

4 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Gene cloning involves using bacteria to make multiple copies of a gene Foreign DNA is inserted into a plasmid, and the recombinant plasmid is inserted into a bacterial cell Reproduction in the bacterial cell results in cloning of the plasmid including the foreign DNA This results in the production of multiple copies of a single gene

5 Fig. 20-2 DNA of chromosome Cell containing gene of interest Gene inserted into plasmid Plasmid put into bacterial cell Recombinant DNA ( plasmid ) Recombinant bacterium Bacterial chromosome Bacterium Gene of interest Host cell grown in culture to form a clone of cells containing the “cloned” gene of interest Plasmid Gene of Interest Protein expressed by gene of interest Basic research and various applications Copies of gene Protein harvested Basic research on gene Basic research on protein Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hor- mone treats stunted growth 2 4 1 3

6 Fig. 20-2a DNA of chromosome Cell containing gene of interest Gene inserted into plasmid Plasmid put into bacterial cell Recombinant DNA (plasmid) Recombinant bacterium Bacterial chromosome Bacterium Gene of interest Plasmid 2 1 2

7 Fig. 20-2b Host cell grown in culture to form a clone of cells containing the “cloned” gene of interest Gene of Interest Protein expressed by gene of interest Basic research and various applications Copies of gene Protein harvested Basic research on gene Basic research on protein 4 Recombinant bacterium Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hor- mone treats stunted growth 3

8 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Using Restriction Enzymes to Make Recombinant DNA Bacterial restriction enzymes cut DNA molecules at specific DNA sequences called restriction sites A restriction enzyme usually makes many cuts, yielding restriction fragments The most useful restriction enzymes cut DNA in a staggered way, producing fragments with “sticky ends” that bond with complementary sticky ends of other fragments Animation: Restriction Enzymes Animation: Restriction Enzymes

9 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings DNA ligase is an enzyme that seals the bonds between restriction fragments

10 Fig. 20-3-1 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5353 3535 1

11 Fig. 20-3-2 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5353 3535 1 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. 2 One possible combination

12 Fig. 20-3-3 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5353 3535 1 One possible combination Recombinant DNA molecule DNA ligase seals strands. 3 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. 2

13 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Cloning a Eukaryotic Gene in a Bacterial Plasmid In gene cloning, the original plasmid is called a cloning vector A cloning vector is a DNA molecule that can carry foreign DNA into a host cell and replicate there

14 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Producing Clones of Cells Carrying Recombinant Plasmids Several steps are required to clone the hummingbird β-globin gene in a bacterial plasmid: – The hummingbird genomic DNA and a bacterial plasmid are isolated – Both are digested with the same restriction enzyme – The fragments are mixed, and DNA ligase is added to bond the fragment sticky ends Animation: Cloning a Gene Animation: Cloning a Gene

15 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings – Some recombinant plasmids now contain hummingbird DNA – The DNA mixture is added to bacteria that have been genetically engineered to accept it – The bacteria are plated on a type of agar that selects for the bacteria with recombinant plasmids – This results in the cloning of many hummingbird DNA fragments, including the β-globin gene

16 Fig. 20-4-1 Bacterial cell Bacterial plasmid lacZ gene Hummingbird cell Gene of interest Hummingbird DNA fragments Restriction site Sticky ends amp R gene TECHNIQUE

17 Fig. 20-4-2 Bacterial cell Bacterial plasmid lacZ gene Hummingbird cell Gene of interest Hummingbird DNA fragments Restriction site Sticky ends amp R gene TECHNIQUE Recombinant plasmids Nonrecombinant plasmid

18 Fig. 20-4-3 Bacterial cell Bacterial plasmid lacZ gene Hummingbird cell Gene of interest Hummingbird DNA fragments Restriction site Sticky ends amp R gene TECHNIQUE Recombinant plasmids Nonrecombinant plasmid Bacteria carrying plasmids

19 Fig. 20-4-4 Bacterial cell Bacterial plasmid lacZ gene Hummingbird cell Gene of interest Hummingbird DNA fragments Restriction site Sticky ends amp R gene TECHNIQUE Recombinant plasmids Nonrecombinant plasmid Bacteria carrying plasmids RESULTS Colony carrying non- recombinant plasmid with intact lacZ gene One of many bacterial clones Colony carrying recombinant plasmid with disrupted lacZ gene

20 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Screening a Library for Clones Carrying a Gene of Interest A clone carrying the gene of interest can be identified with a nucleic acid probe having a sequence complementary to the gene This process is called nucleic acid hybridization

21 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings A probe can be synthesized that is complementary to the gene of interest For example, if the desired gene is – Then we would synthesize this probe G 5 3 …… GGCCCTTTAAA C 3 5 CCGGGAAATTT

22 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The DNA probe can be used to screen a large number of clones simultaneously for the gene of interest Once identified, the clone carrying the gene of interest can be cultured

23 Fig. 20-7 Probe DNA Radioactively labeled probe molecules Film Nylon membrane Multiwell plates holding library clones Location of DNA with the complementary sequence Gene of interest Single-stranded DNA from cell Nylon membrane TECHNIQUE

24 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Amplifying DNA in Vitro: The Polymerase Chain Reaction (PCR) The polymerase chain reaction, PCR, can produce many copies of a specific target segment of DNA A three-step cycle—heating, cooling, and replication—brings about a chain reaction that produces an exponentially growing population of identical DNA molecules

25 Fig. 20-8 5 Genomic DNA TECHNIQUE Cycle 1 yields 2 molecules Denaturation Annealing Extension Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence Target sequence Primers New nucleo- tides 3 3 3 3 5 5 5 1 2 3

26 Fig. 20-8a 5 Genomic DNA TECHNIQUE Target sequence 3 3 5

27 Fig. 20-8b Cycle 1 yields 2 molecules Denaturation Annealing Extension Primers New nucleo- tides 3 5 3 2 53 1

28 Fig. 20-8c Cycle 2 yields 4 molecules

29 Fig. 20-8d Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence

30 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Concept 20.2: DNA technology allows us to study the sequence, expression, and function of a gene DNA cloning allows researchers to – Compare genes and alleles between individuals – Locate gene expression in a body – Determine the role of a gene in an organism Several techniques are used to analyze the DNA of genes

31 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Gel Electrophoresis and Southern Blotting One indirect method of rapidly analyzing and comparing genomes is gel electrophoresis This technique uses a gel as a molecular sieve to separate nucleic acids or proteins by size A current is applied that causes charged molecules to move through the gel Molecules are sorted into “bands” by their size Video: Biotechnology Lab Video: Biotechnology Lab

32 Fig. 20-9 Mixture of DNA mol- ecules of different sizes Power source Longer molecules Shorter molecules Gel Anode Cathode TECHNIQUE RESULTS 1 2 + + – –

33 Fig. 20-9a Mixture of DNA mol- ecules of different sizes Power source Longer molecules Shorter molecules Gel Anode Cathode TECHNIQUE 1 2 Power source – + + –

34 Fig. 20-9b RESULTS

35 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings In restriction fragment analysis, DNA fragments produced by restriction enzyme digestion of a DNA molecule are sorted by gel electrophoresis Restriction fragment analysis is useful for comparing two different DNA molecules, such as two alleles for a gene The procedure is also used to prepare pure samples of individual fragments

36 Fig. 20-10 Normal allele Sickle-cell allele Large fragment (b) Electrophoresis of restriction fragments from normal and sickle-cell alleles 201 bp 175 bp 376 bp (a) Dde I restriction sites in normal and sickle-cell alleles of  -globin gene Normal  -globin allele Sickle-cell mutant  -globin allele Dde I Large fragment 376 bp 201 bp 175 bp Dde I

37 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings A technique called Southern blotting combines gel electrophoresis of DNA fragments with nucleic acid hybridization Specific DNA fragments can be identified by Southern blotting, using labeled probes that hybridize to the DNA immobilized on a “blot” of gel

38 Fig. 20-11 TECHNIQUE Nitrocellulose membrane (blot) Restriction fragments Alkaline solution DNA transfer (blotting) Sponge Gel Heavy weight Paper towels Preparation of restriction fragments Gel electrophoresis I II III Radioactively labeled probe for  -globin gene DNA + restriction enzyme III Heterozygote II Sickle-cell allele I Normal  -globin allele Film over blot Probe detection Hybridization with radioactive probe Fragment from sickle-cell  -globin allele Fragment from normal  -globin allele Probe base-pairs with fragments Nitrocellulose blot 1 4 5 3 2

39 Fig. 20-11a TECHNIQUE Nitrocellulose membrane (blot) Restriction fragments Alkaline solution DNA transfer (blotting) Sponge Gel Heavy weight Paper towels Preparation of restriction fragmentsGel electrophoresis I II III DNA + restriction enzyme III Heterozygote II Sickle-cell allele I Normal  -globin allele 1 32

40 Fig. 20-11b I II III Film over blot Probe detectionHybridization with radioactive probe Fragment from sickle-cell  -globin allele Fragment from normal  -globin allele Probe base-pairs with fragments Nitrocellulose blot 4 5 Radioactively labeled probe for  -globin gene

41 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Organismal cloning produces one or more organisms genetically identical to the “parent” that donated the single cell Concept 20.3: Cloning organisms may lead to production of stem cells for research and other applications

42 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Cloning Plants: Single-Cell Cultures One experimental approach for testing genomic equivalence is to see whether a differentiated cell can generate a whole organism A totipotent cell is one that can generate a complete new organism

43 Fig. 20-16 EXPERIMENT Transverse section of carrot root 2-mg fragments Fragments were cultured in nu- trient medium; stirring caused single cells to shear off into the liquid. Single cells free in suspension began to divide. Embryonic plant developed from a cultured single cell. Plantlet was cultured on agar medium. Later it was planted in soil. A single somatic carrot cell developed into a mature carrot plant. RESULTS

44 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Reproductive Cloning of Mammals In 1997, Scottish researchers announced the birth of Dolly, a lamb cloned from an adult sheep by nuclear transplantation from a differentiated mammary cell Dolly’s premature death in 2003, as well as her arthritis, led to speculation that her cells were not as healthy as those of a normal sheep, possibly reflecting incomplete reprogramming of the original transplanted nucleus

45 Fig. 20-18 TECHNIQUE Mammary cell donor RESULTS Surrogate mother Nucleus from mammary cell Cultured mammary cells Implanted in uterus of a third sheep Early embryo Nucleus removed Egg cell donor Embryonic development Lamb (“Dolly”) genetically identical to mammary cell donor Egg cell from ovary Cells fused Grown in culture 1 3 3 4 5 6 2

46 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Since 1997, cloning has been demonstrated in many mammals, including mice, cats, cows, horses, mules, pigs, and dogs CC (for Carbon Copy) was the first cat cloned; however, CC differed somewhat from her female “parent”

47 Fig. 20-19

48 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Problems Associated with Animal Cloning In most nuclear transplantation studies, only a small percentage of cloned embryos have developed normally to birth Many epigenetic changes, such as acetylation of histones or methylation of DNA, must be reversed in the nucleus from a donor animal in order for genes to be expressed or repressed appropriately for early stages of development

49 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Stem Cells of Animals A stem cell is a relatively unspecialized cell that can reproduce itself indefinitely and differentiate into specialized cells of one or more types Stem cells isolated from early embryos at the blastocyst stage are called embryonic stem cells; these are able to differentiate into all cell types The adult body also has stem cells, which replace nonreproducing specialized cells

50 Fig. 20-20 Cultured stem cells Early human embryo at blastocyst stage (mammalian equiva- lent of blastula) Different culture conditions Different types of differentiated cells Blood cells Nerve cells Liver cells Cells generating all embryonic cell types Adult stem cells Cells generating some cell types Embryonic stem cells From bone marrow in this example

51 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Human Gene Therapy Gene therapy is the alteration of an afflicted individual’s genes Gene therapy holds great potential for treating disorders traceable to a single defective gene Vectors are used for delivery of genes into specific types of cells, for example bone marrow Gene therapy raises ethical questions, such as whether human germ-line cells should be treated to correct the defect in future generations

52 Fig. 20-22 Bone marrow Cloned gene Bone marrow cell from patient Insert RNA version of normal allele into retrovirus. Retrovirus capsid Viral RNA Let retrovirus infect bone marrow cells that have been removed from the patient and cultured. Viral DNA carrying the normal allele inserts into chromosome. Inject engineered cells into patient. 1 2 3 4

53 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Pharmaceutical Products Advances in DNA technology and genetic research are important to the development of new drugs to treat diseases

54 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Transgenic animals are made by introducing genes from one species into the genome of another animal Transgenic animals are pharmaceutical “factories,” producers of large amounts of otherwise rare substances for medical use “Pharm” plants are also being developed to make human proteins for medical use Protein Production by “Pharm” Animals and Plants

55 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Environmental Cleanup Genetic engineering can be used to modify the metabolism of microorganisms Some modified microorganisms can be used to extract minerals from the environment or degrade potentially toxic waste materials Biofuels make use of crops such as corn, soybeans, and cassava to replace fossil fuels

56 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Agricultural Applications DNA technology is being used to improve agricultural productivity and food quality

57 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animal Husbandry Genetic engineering of transgenic animals speeds up the selective breeding process Beneficial genes can be transferred between varieties or species

58 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Safety and Ethical Questions Raised by DNA Technology Potential benefits of genetic engineering must be weighed against potential hazards of creating harmful products or procedures Guidelines are in place in the United States and other countries to ensure safe practices for recombinant DNA technology

59 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Most public concern about possible hazards centers on genetically modified (GM) organisms used as food Some are concerned about the creation of “super weeds” from the transfer of genes from GM crops to their wild relatives

60 Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings As biotechnology continues to change, so does its use in agriculture, industry, and medicine National agencies and international organizations strive to set guidelines for safe and ethical practices in the use of biotechnology


Download ppt "Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell."

Similar presentations


Ads by Google