Download presentation
Presentation is loading. Please wait.
Published byMaud Russell Modified over 8 years ago
1
Demand Forecasting Production and Operations Management Judit Uzonyi-Kecskés Ph.D. Student Department of Management and Corporate Economics Budapest University of Technology and Economics uzonyi-kecskes@mvt.bme.hu
2
Literature Waters, D.: Operations Management – Producing goods & Services Nahmias, S.: Production and Operation Analysis Vonderembse, M. A. and White, G. P.: Operations Management – Concepts, Methods, and Strategies
3
Topics Introduction Forecasting methods Patterns of demand Forecasting stationary series –Moving average (with example) –Simple exponential smoothing (with example) Evaluating forecasts –Analyzing the size of errors (with example) –Analyzing the validity of the forecasting model (with example)
4
Forecasting Predicting the future Application of forecasting results: –Capacity planning –Production scheduling –Inventory control –Materials requirement planning
5
Time Horizon in Forecasting Short-term: operative decisions – day to day planning Medium term: tactical decisions – production planning Long-term: strategic decisions – investment decisions The longer the time horizon, the less reliable the forecast is –Availability and relevance of historical data –Seriousness of any error
6
Forecasting Methods Subjective methods Objective methods
7
Subjective Forecasting Methods Based on expert opinion –Personal insight –Panel consensus –Delphi method –Historic analogy Based on customer opinion –Indirectly: Sales force composites –Directly: Market surveys
8
Objective Forecasting Methods Casual methods –Analyzing the causes of the demand –Forecasting the demand based on the measure of the causes Time series/projective methods –Analyzing the demand of previous periods –Determining the patterns of the demand –Forecasting the demand based on the information of previous prior periods
9
Patterns of Demand Randomness Constant demand Trend Seasonality
10
Symbols t: period t (e.g. day, week, month) D t : observation of demand in period t F t,t+τ : forecast in period t for period t+τ F t : forecast for period t Other parameters (e.g. time horizon parameter, smoothing constants)
11
Forecasting Stationary Series Most frequently used methods: –Moving average –Simple exponential smoothing
12
Moving Average Forecasting: N: number of analyzed periods –Large N: more weight on past data forecasts are more stable –Small N: more weight on the current observation of demand forecasts react quickly to changes in the demand
13
Example In a car factory the management observed that the demand for the factory’s car is nearly constant. Therefore they forecast the demand with the help of moving average based on the demand information of the last 2 months.
14
Example The observed demands in the last 7 periods were the following: PeriodDemand 1200 2255 3176 4189 5224 6283 7308
15
Example The observed demand in the first two periods was 200 and 255 cars: –D 1 =200, –D 2 =255. The forecast is based on the demand information of the last 2 months: N=2. The first period when forecast can be performed is period 3: t=3 –D t-1 = D 3-1 =D 2 =255 –D t-N = D 3-2 =D 1 =200
16
Example Forecast for the third period, if N=2: Forecasts for the following periods:
17
Example Comparison of the observed and the forecasted demand –Draw attention to systematic error in forecasting –Help to identify outlier data
18
Example Multiple-step-ahead forecast –Last known demands: D 6 =283 and D 7 =308. –Last forecast: F 8 =295,5. We assume that demand is constant! Suppose that in period 8 we observe a demand of D 8 =195, we now need to update the forecasts:
19
Moving average defects Same weight Constant demand Large amount of historic data
20
Exponential Smoothing Forecast is a weighted average Current forecast is based on: –Last forecast –Last value of demand –Smoothing constant (e.g. α): 0 ≤ α, ≤ 1
21
Simple Exponential Smoothing Forecast α: smoothing constant (0 ≤ α ≤ 1) –Large α: more weight on the current observation of demand forecasts react quickly to changes in the demand –Small α: more weight on past data forecasts are more stable
22
Example In a car factory the management observed that the demand for the factory’s car is nearly constant. Therefore they forecast the demand with the help of simple exponential smoothing, and they use α=0.1 value as smoothing constant. The forecast for the first period was 250 cars.
23
Example The observed demands in the last 7 periods were the following: PeriodDemand 1200 2255 3176 4189 5224 6283 7308
24
Example The forecast for the first period was 250 cars: F 1 =250. The observed demand in the first period was 200 cars: D 1 =200. Forecast for the second period, if α=0.1:
25
Example
26
More-step-ahead forecast –Last known demand: D 7 =308. –Last forecast: F 8 =245. We assume that demand is constant! Suppose that in period 8 we observe a demand of D 8 =195, we now need to update the forecasts:
27
Comparison of the Two Methods Similarities –Both assume that demand is stationary –Both use a single parameter (N or α) Differences –Number of directly used demand data –Number and weights of indirectly used demand data
28
Evaluating Forecasts There are almost always errors in forecasts –Random effects, noises –Inappropriate forecasting methods Analysis of –the size of forecasting errors –the validity of forecasting models
29
Forecast Error Difference between the forecasted value for a period and the actual demand for the same period Covers only one period Does not give information about the acceptability of the forecasting method
30
Mean Error The average error during a term of n periods Positive and negative errors cancel each other
31
Absolute Error Measures Measures of forecasts accuracy during n periods Mean absolute error Positive and negative errors cannot cancel each other Does not give information about the relative size of error
32
Mean Absolute Percentage Error Arithmetical average of percentage error of n periods Gives information about the average, relative size of the absolute error observed during several periods
33
Example We have the following forecast and demand data. Evaluate the size of forecast errors. PeriodDemandForecast 1100110 2130169 3150135 4140168 5110121
34
Example First determine the forecast error in each period PeriodDemandForecastError 1100110 213016939 3150135-15 414016828 511012111
35
Example Determine the presented error measures after period 5 (t=5, T=4)
36
Example
37
Validity of Forecasting Method Analyzing the validity of the forecasting method used Signs that forecast –is inappropriate –will be inappropriate in the immediate future Tracking signal will be used Monitoring –the size of tracking signal values –the tendency of tracking signal values
38
Tracking Signal Moving sum of forecast error in period t Mean absolute error in period t Tracking signal in period t
39
Monitoring the Tracking Signal Monitoring size Monitoring tendency –Tracking signal diagram –Typical patterns: Small-scale, random alternating near to zero Increasing trend Decreasing trend Regular alternating
40
Example We have the following forecast and demand data. Evaluate the validity of forecast model. PeriodDemandForecast 1100110 2 126130 3 124120 4 129125 5 135115
41
Example Determine the value of tracking signal in each period PeriodDtDt FtFt etet MSFE t |et||et|MAE t TS t 1100110 2 12613044441 3 124120-40440 4 129125-4 44 5 135115-20-24208-3
42
Example Draw the tracking signal diagram Evaluate the validity of forecasting method applied –Only few data were available –Does not step out of control borders –Decreasing trend, systematic undervaluation –There is a negative trend instead of constant demand, there is a constant demand instead of positive trend, etc.
43
Possible questions in the exam Name subjective forecasting methods In which life cycle period are subjective/objective methods used? Name the similarities/differences between moving average and exponential smoothing. Name differences between forecasts made by simple exponential smoothing(moving average) with a small and a large α (N) value? Name three different forecasting errors
44
Possible exercises in the exam Give forecast using moving average Give forecast using exponential smoothing Determine the values of simple error / mean error / absolute mean error You can find examples for these in the presentation!
45
Exercise for extra points The demand for a product is constant. Make forecasts for periods 3 and 4. Use moving average method. N=2. Make forecasts for periods 2,3 and 4. Use exponential smoothing. α=0.3 Give a multiple-step-ahead forecast for period 7 from period 4. Period1234 Demand140150200220
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.