Presentation is loading. Please wait.

Presentation is loading. Please wait.

Machine Vision The goal of Machine Vision is to create a model of the real world from images – A machine vision system recovers useful information about.

Similar presentations


Presentation on theme: "Machine Vision The goal of Machine Vision is to create a model of the real world from images – A machine vision system recovers useful information about."— Presentation transcript:

1 Machine Vision The goal of Machine Vision is to create a model of the real world from images – A machine vision system recovers useful information about a scene from its two dimensional projections – The world is three dimensional – Two dimensional digitized images

2 Machine Vision (2) Knowledge about the objects(regions) in a scene and projection geometry is required. The information which is recovered differs depending on the application – Satellite, medical images etc. Processing takes place in stages: – Enhancement, segmentation, image analysis and matching (pattern recognition).

3 Illumination Scene 2D Digital Image Feedback Image Description Image Acquisition Machine Vision System The goal of a machine vision system is to compute a Meaningful description of the scene (e.g., object)

4 Machine Vision Stages Analog to digital conversion Remove noise/Patterns, Improve contrast Find regions(object) in the image Take measurements of objects/relationships Match the above description with similar description of known objects(models) Image Acquisition (by cameras, scanners etc) Image Processing Image Enhancement Image Restoration Image Segmentation Image Analysis (Binary Image Processing) Model Matching Pattern Recognition

5 Image Processing Image transformation – Image enhancement (filtering, edge detection, surface detection, computation of depth). – Image restoration(remove point/pattern degradation: there exist a mathematical expression of the type of degradation like e.g. Added multiplicative noise, sin/cos pattern degradation etc). Input ImageOutput Image Image Processing

6 Image Segmentation Classify pixels into groups(regions/objects of interest) sharing common characteristics. – Intensity/Color, texture, motion etc. Two types of techniques: – Region segmentation: fine the pixels of a region. – Edge segmentation: find the pixels of its outline contour. Input ImageRegions/Objects Image Segmentation

7 Image Analysis Take useful measurements from pixels, regions, spatial relationship, motion etc. – Gray scale / color intensity values; – Size, distance; – Velocity Input Image Segmented Image (regions, objects) Measurements Image Analysis

8 Pattern Recognition Classify an image(region) into one of a number of known classes – Statistical pattern recognition(the measurements form vectors which are classified into classes); – Structural pattern recognition(decompose the image into primitive structures). Image/regions Measurements, or Structural description Class identifier Model Matching Pattern Recognition

9 Relationships to other fields Image Processing (IP) Pattern Recognition (PR) Computer Graphics (CG) Artificial Intelligence (AI) Neural Networks (NN) Psychophysics

10 Computer Graphics (CG) Machine vision is the analysis of images while CG is the decomposition of images: – CG generates images from geometric primitives (lines, circles, surfaces). – Machine vision is the inverse: estimate the geometric primitives from an image. Visualization and virtual reality bring these two fields closer.

11 Machine Vision Applications Robotics Medicine Remote Sensing Cartography Meteorology Quality inspection Reconnaissance

12 Machine Vision Systems There is no universal machine vision system – One system for each application Assumptions: – Good lighting; – Low noise; – 2D images Passive – Active environment – Changes in the environment call for different actions (e.g., turn left, push the break etc).

13 Vision by Man and Machine What is the mechanism of human vision? – Can a machine do the same thing? – There are many studies; – Most are empirical. Humans and machines have different – Software – Hardware

14 Human “Hardware” Photoreceptors take measurements of light signals. – About 106 Photoreceptors. Retinal ganglion cells transmit electric and chemical signals to the brain – Complex 3D interconnections; – What the neurons do? In what sequence? – Algorithms? Heavy Parallelism.

15 시각 눈의 영상 감지 과정 – 안구 → 각막 → 홍체 수축 → 렌즈 모양 변함 → 광자가 망막 감광 기관에 몰림 → 감광기관 (rod,cone) 은 빛의 강도와 형태, 색깔을 신경 자극으로 변환 → 감광 신경 들의 자극들을 뇌에 전달 → 뇌에서 신경자극들을 해석 감광기관 – Cone 컬러 감각 기관, 망막중앙의 fovea 에 집중됨, 3 가지 종류 (R,G,B) (7 백만개 ) – Rod 강도 감각 기관으로 빛의 강도에 매우 민감 (1 억 2 천 5 백만개 )

16 Spectral response of cones

17

18 Machine Vision Hardware PCs, workstations etc. Signals: 2D image arrays gray level/color values. Modules: low level processing, shape from texture, motion, contours etc. Simple interconnections. No parallelism

19 Geometrical Model Determines where in the image plane the projection of a point will be located. – the projected image is inverted – (x,y,z) is projected on (x’,y’) – f: focal length

20 Avoid inversion by assuming that the image plane is front of the center of projection – done automatically by cameras or by the human brain Apply Euclidean geometry – x’ = x f /z and y’ = y f/z

21 Sampling and Quantization Sampling : – Sample within the image at a finite number of points from a scene. – Spatial resolutions... image resolution. Quantization : – Represent each sample within the finite word size of the computer. – 24 bit color, 16 bit color, 8 bit color, 8 bit grey,.... Pixel : – Each image sample. – Unsigned 8-bit integer in the range. – 0... black, 255... white, the shades of gray... middle values.

22 디지털 영상 취득 디지타이저 (Digitizer) – 아날로그 형태의 그림을 디지털 형태로 변환 – 스캐너, 디지털 카메라, Frame Grabber 샘플링 (Sampling) – 아날로그 비디오 신호를 동등한 공간 크기로 데 이터 포인트 (pixel) 들을 획득

23 디지털 영상 취득 양자화 (Quantization) – 아날로그 신호의 디지털 값을 결정하는 과정 – Bit/Pixel 이 작을 수록 윤곽의 일그러짐이 두드 러짐 변환 과정 – 원본 → 샘플링 → 변환기에 의해 빛을 밝기로 표 현되는 신호로 변환 →A/D 변환기에 의해 양자 화

24 디지털 영상 취득 Image Sensor(CCD, CMOS) : 빛 에너지 → 영상신호 A/D 신호 변환 (Sampling, 양자화 ) – Pixel( 화소 ) – Gray-level

25

26 Sampling

27 Gray Level Resolution ■ 한 화소 (pixel) 에서 표현되는 명암의 개수 ■Binary image : 0/1 ■Gray-scale image: 0~2 n -1, n: 화소당 bit 수 – 8-bit image : 0-255 1-bit3-bit8-bit

28 보통 Header + Data 로 저장 다양한 포맷 : BMP, TIF, JPEG, … Portable Bitmap : 사용이 간편 – PBM(portable bitmap) 간단하고 다른 그래픽 파일 형식으로 변환 용이 0 과 1 의 값으로 표현, 바이트당 8 개의 화소를 저장 – PPM(portable pixmap) 컬러 영상, 화소당 3 바이트 필요 – PGM(portable graymap) Gray level 영상, 바이트당 한 화소 저장 디지털 영상 저장

29

30

31 영상 저장을 위한 단일포인터 이용 방법 unsigned char *inputImg; // 입력 영상의 기억 장소에 대한 포인터 변수 unsigned char *resultImg; // 출력 영상의 기억 장소에 대한 포인터 변수 int imageWidth; // 영상의 가로 크기 int imageHeight; // 영상의 세로 크기 int depth; // 1 = 흑백 영상, 3 = 컬러 영상 // memory 할당 inputImg = (unsigned char *) malloc(imageWidth * imageHeight * depth); resultImg = (unsigned char *) malloc(imageWidth * imageHeight * depth); // 흑백영상에 대한 산술덧셈 예 for (y = 0; y < imageHeight; y++) for (x = 0; x < imageWidth; x++) { value = inputImg[y * imageWidth + x] + 100; if (value > 255) value = 255; resultImg[y * imageWidth + x] = value; }

32 Levels of Computation Point Level : Local Level : Global Level : The output depends on the whole picture. Ex) a histogram of intensity values, the Fourier transform Object Level – Most applications of computer vision require properties to be computed at the object level. – Size, average intensity, shape, and other characteristics of an object must be computed for the system to recognize an object.


Download ppt "Machine Vision The goal of Machine Vision is to create a model of the real world from images – A machine vision system recovers useful information about."

Similar presentations


Ads by Google