Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 25– Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 14 th March,

Similar presentations


Presentation on theme: "CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 25– Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 14 th March,"— Presentation transcript:

1 CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 25– Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 14 th March, 2011

2 Bracketed Structure: Treebank Corpus [ S1 [ S [ S [ VP [ VB Come][ NP [ NNP July]]]] [,,] [ CC and] [ S [ NP [ DT the] [ JJ IIT] [ NN campus]] [ VP [ AUX is] [ ADJP [ JJ abuzz] [ PP [ IN with] [ NP [ ADJP [ JJ new] [ CC and] [ VBG returning]] [ NNS students]]]]]] [..]]]

3 Noisy Channel Modeling Noisy Channel Source sentence Target parse T*= argmax [P(T|S)] T = argmax [P(T).P(S|T)] T = argmax [P(T)], since given the parse the Tsentence is completely determined and P(S|T)=1

4 Corpus A collection of text called corpus, is used for collecting various language data With annotation: more information, but manual labor intensive Practice: label automatically; correct manually The famous Brown Corpus contains 1 million tagged words. Switchboard: very famous corpora 2400 conversations, 543 speakers, many US dialects, annotated with orthography and phonetics

5 Discriminative vs. Generative Model W * = argmax (P(W|SS)) W Compute directly from P(W|SS) Compute from P(W).P(SS|W) Discriminative Model Generative Model

6 Language Models N-grams: sequence of n consecutive words/characters Probabilistic / Stochastic Context Free Grammars:  Simple probabilistic models capable of handling recursion  A CFG with probabilities attached to rules  Rule probabilities  how likely is it that a particular rewrite rule is used?

7 PCFGs Why PCFGs?  Intuitive probabilistic models for tree-structured languages  Algorithms are extensions of HMM algorithms  Better than the n-gram model for language modeling.

8 Formal Definition of PCFG A PCFG consists of  A set of terminals {w k }, k = 1,….,V {w k } = { child, teddy, bear, played…}  A set of non-terminals {N i }, i = 1,…,n {N i } = { NP, VP, DT…}  A designated start symbol N 1  A set of rules {N i   j }, where  j is a sequence of terminals & non-terminals NP  DT NN  A corresponding set of rule probabilities

9 Rule Probabilities  Rule probabilities are such that E.g., P( NP  DT NN) = 0.2 P( NP  NN) = 0.5 P( NP  NP PP) = 0.3  P( NP  DT NN) = 0.2  Means 20 % of the training data parses use the rule NP  DT NN

10 Probabilistic Context Free Grammars S  NP VP1.0 NP  DT NN0.5 NP  NNS0.3 NP  NP PP 0.2 PP  P NP1.0 VP  VP PP 0.6 VP  VBD NP0.4 DT  the1.0 NN  gunman0.5 NN  building0.5 VBD  sprayed 1.0 NNS  bullets1.0

11 Example Parse t 1` The gunman sprayed the building with bullets. S 1.0 NP 0.5 VP 0.6 DT 1.0 NN 0.5 VBD 1.0 NP 0.5 PP 1.0 DT 1.0 NN 0.5 P 1.0 NP 0.3 NNS 1.0 bullets with buildingthe Thegunman sprayed P (t 1 ) = 1.0 * 0.5 * 1.0 * 0.5 * 0.6 * 0.4 * 1.0 * 0.5 * 1.0 * 0.5 * 1.0 * 1.0 * 0.3 * 1.0 = 0.00225 VP 0.4

12 Another Parse t 2 S 1.0 NP 0.5 VP 0.4 DT 1.0 NN 0.5 VBD 1.0 NP 0.5 PP 1.0 DT 1.0 NN 0.5 P 1.0 NP 0.3 NNS 1.0 bullet s with buildingth e Thegunmansprayed NP 0.2 P (t 2 ) = 1.0 * 0.5 * 1.0 * 0.5 * 0.4 * 1.0 * 0.2 * 0.5 * 1.0 * 0.5 * 1.0 * 1.0 * 0.3 * 1.0 = 0.0015 The gunman sprayed the building with bullets.

13 Probability of a sentence Notation : w ab – subsequence w a ….w b N j dominates w a ….w b or yield(N j ) = w a ….w b w a ……………..w b NjNj Where t is a parse tree of the sentence the..sweet..teddy..bear NP Probability of a sentence = P(w 1m ) If t is a parse tree for the sentence w 1m, this will be 1 !!

14 Assumptions of the PCFG model Place invariance : P(NP  DT NN) is same in locations 1 and 2 Context-free : P(NP  DT NN | anything outside “The child”) = P(NP  DT NN) Ancestor free : At 2, P(NP  DT NN|its ancestor is VP) = P(NP  DT NN) S NP The child VP NP The toy 1 2

15 Probability of a parse tree Domination :We say N j dominates from k to l, symbolized as, if W k,l is derived from N j P (tree |sentence) = P (tree | S 1,l ) where S 1,l means that the start symbol S dominates the word sequence W 1,l P (t |s) approximately equals joint probability of constituent non-terminals dominating the sentence fragments (next slide)

16 Probability of a parse tree (cont.) S 1,l NP 1,2 VP 3,l N2N2 V 3,3 PP 4,l P 4,4 NP 5,l w2w2 w4w4 DT 1 w1w1 w3w3 w5w5 wlwl P ( t|s ) = P (t | S 1,l ) = P ( NP 1,2, DT 1,1, w 1, N 2,2, w 2, VP 3,l, V 3,3, w 3, PP 4,l, P 4,4, w 4, NP 5,l, w 5…l | S 1,l ) = P ( NP 1,2, VP 3,l | S 1,l ) * P ( DT 1,1, N 2,2 | NP 1,2 ) * D(w 1 | DT 1,1 ) * P (w 2 | N 2,2 ) * P (V 3,3, PP 4,l | VP 3,l ) * P(w 3 | V 3,3 ) * P( P 4,4, NP 5,l | PP 4,l ) * P(w 4 |P 4,4 ) * P (w 5…l | NP 5,l ) (Using Chain Rule, Context Freeness and Ancestor Freeness )

17 HMM ↔ PCFG O observed sequence ↔ w 1m sentence X state sequence ↔ t parse tree  model ↔ G grammar Three fundamental questions

18 HMM ↔ PCFG How likely is a certain observation given the model? ↔ How likely is a sentence given the grammar? How to choose a state sequence which best explains the observations? ↔ How to choose a parse which best supports the sentence? ↔ ↔

19 HMM ↔ PCFG How to choose the model parameters that best explain the observed data? ↔ How to choose rule probabilities which maximize the probabilities of the observed sentences? ↔

20 Interesting Probabilities The gunman sprayed the building with bullets 1 2 3 45 6 7 N1N1 NP What is the probability of having a NP at this position such that it will derive “the building” ? - What is the probability of starting from N 1 and deriving “The gunman sprayed”, a NP and “with bullets” ? - Inside Probabilities Outside Probabilities

21 Interesting Probabilities Random variables to be considered The non-terminal being expanded. E.g., NP The word-span covered by the non-terminal. E.g., (4,5) refers to words “the building” While calculating probabilities, consider: The rule to be used for expansion : E.g., NP  DT NN The probabilities associated with the RHS non- terminals : E.g., DT subtree’s inside/outside probabilities & NN subtree’s inside/outside probabilities

22 Outside Probability  j (p,q) : The probability of beginning with N 1 & generating the non-terminal N j pq and all words outside w p..w q w 1 ………w p-1 w p …w q w q+1 ……… w m N1N1 NjNj

23 Inside Probabilities  j (p,q) : The probability of generating the words w p..w q starting with the non-terminal N j pq. w 1 ………w p-1 w p …w q w q+1 ……… w m   N1N1 NjNj

24 Outside & Inside Probabilities: example The gunman sprayed the building with bullets 1 2 3 45 6 7 N1N1 NP

25 Calculating Inside probabilities  j (p,q) Base case: Base case is used for rules which derive the words or terminals directly E.g., Suppose N j = NN is being considered & NN  building is one of the rules with probability 0.5

26 Induction Step: Assuming Grammar in Chomsky Normal Form Induction step : wpwp NjNj NrNr NsNs wdwd w d+1 wqwq Consider different splits of the words - indicated by d E.g., the huge building Consider different non-terminals to be used in the rule: NP  DT NN, NP  DT NNS are available options Consider summation over all these. Split here for d=2 d=3

27 The Bottom-Up Approach The idea of induction Consider “the gunman” Base cases : Apply unary rules DT  the Prob = 1.0 NN  gunmanProb = 0.5 Induction : Prob that a NP covers these 2 words = P (NP  DT NN) * P (DT deriving the word “the”) * P (NN deriving the word “gunman”) = 0.5 * 1.0 * 0.5 = 0.25 The gunman NP 0.5 DT 1.0 NN 0.5

28 Parse Triangle A parse triangle is constructed for calculating  j (p,q) Probability of a sentence using  j (p,q):

29 Parse Triangle The (1) gunman (2) sprayed (3) the (4) building (5) with (6) bullets (7) 1 2 3 4 5 6 7 Fill diagonals with

30 Parse Triangle The (1) gunman (2) sprayed (3) the (4) building (5) with (6) bullets (7) 1 2 3 4 5 6 7 Calculate using induction formula

31 Example Parse t 1 S 1.0 NP 0.5 VP 0.6 DT 1.0 NN 0.5 VBD 1.0 NP 0.5 PP 1.0 DT 1.0 NN 0.5 P 1.0 NP 0.3 NNS 1.0 bullet s with buildingth e Thegunman sprayed VP 0.4 Rule used here is VP  VP PP The gunman sprayed the building with bullets.

32 Another Parse t 2 S 1.0 NP 0.5 VP 0.4 DT 1.0 NN 0.5 VBD 1.0 NP 0.5 PP 1.0 DT 1.0 NN 0.5 P 1.0 NP 0.3 NNS 1.0 bullet s with buildingth e Thegunmansprayed NP 0.2 Rule used here is VP  VBD NP The gunman sprayed the building with bullets.

33 Parse Triangle The (1)gunman (2) sprayed (3) the (4) building (5) with (6) bullets (7) 1 2 3 4 5 6 7

34 Different Parses Consider Different splitting points : E.g., 5th and 3 rd position Using different rules for VP expansion : E.g., VP  VP PP, VP  VBD NP Different parses for the VP “sprayed the building with bullets” can be constructed this way.

35 Outside Probabilities  j (p,q) Base case: Inductive step for calculating : wpwp N f pe N j pq N g (q+1) e wqwq w q+1 wewe w p-1 w1w1 wmwm w e+1 N1N1 Summation over f, g & e

36 Probability of a Sentence Joint probability of a sentence w 1m and that there is a constituent spanning words w p to w q is given as: The gunman sprayed the building with bullets 1 2 3 45 6 7 N1N1 NP


Download ppt "CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 25– Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 14 th March,"

Similar presentations


Ads by Google