Presentation is loading. Please wait.

Presentation is loading. Please wait.

Prospects for quarkonia at SuperKEKB Stephen Lars Olsen Seoul National University Heavy Quarkonium 2011, 4-7 October, GSI, Darmstadt.

Similar presentations


Presentation on theme: "Prospects for quarkonia at SuperKEKB Stephen Lars Olsen Seoul National University Heavy Quarkonium 2011, 4-7 October, GSI, Darmstadt."— Presentation transcript:

1 Prospects for quarkonia at SuperKEKB Stephen Lars Olsen Seoul National University Heavy Quarkonium 2011, 4-7 October, GSI, Darmstadt

2 e- 7 GeV 2.6 A e+ 4 GeV 3.6 A x 40 Increase in Luminosity SuperKEKB Colliding bunches Damping ring Low emittance gun Positron source New beam pipe & bellows Belle II New IR TiN-coated beam pipe with antechambers Redesign the lattices of both rings to reduce the emittance Add / modify RF systems for higher beam current New positron target / capture section New superconducting /permanent final focusing quads near the IP Inject low emittance electrons Inject low emittance positrons Replace short dipoles with longer ones (LER)

3 electron (7GeV) positron (4GeV) KL/ muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps) Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd) Central Drift Chamber He(50%):C 2 H 6 (50%), Small cells, long lever arm, fast electronics EM Calorimeter: CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps) Vertex Detector 2 layers DEPFET + 4 layers DSSD Beryllium beam pipe 2 cm diameter Belle II Detector

4 Belle II versus Belle II more background hits, but manageable Less Coulomb scattering Pixel detector closer to the beam pipe Belle Belle II 1.0 2.0 0 30  m 65  m p  sin(  ) 5/2 [GeV/c] [m][m] + - 4S e=e= e-e- assign tracks to individual B mesons  reduce combinatoric backgrounds

5 SuperKEKB Construction Schedule FY2010(H22)FY2011(H23)FY2012(H24)FY2013(H25)FY2014(H26) MR commissioning DR commissioning Linac commissioning Remove shields Set shields MR Tunnel Disassemble KEKB Beam Pipe Magnet QCS Monitor Floor Survey & base plate Installation, system check, cabling etc. Baking & TiN coating R&D Fabrication alignment Installation, cabling Field measurement RF Infrastructure Fabrication R&D,designFabrication Installation, alignment etc. Field measurement R&D Fabrication, installation Fabrication, rearrangement etc. R&D,Prototype,test DesignBuilding Construction Cooling system -2011 -2014 1 st beam in ~3 years

6 Belle II Construction Schedule 6 Designed to match the machine commissioning schedule and keep up with flavor physics at LHC Hamamatsu MCP-PMT end-plate ready for drilling DEPFET Pixel module DSSD-sensor+APV25 ECL electronics KLM module 0

7 Y. Ohnishi ~ 10 times more data ~50 times more data with data quality similar to that of Belle but with reduced combinatoric bkg expectation -2014 -2016: -2021:

8 What do we do with all this data?  “Unfinished business”  2 &  2  remaining narrow states >  c0 ‘ (via  c0  DD) &  c1 ’ (via  c1 ’  D*D)?  X(3872) properties > J PC = 1 ++ or 2 -+ ? > improved width measurement > line-shape for X(3872)  DD* > other decay modes  “ ϒ (5S)”  Z + b1,2  - > are these from the ϒ (5S)?.. or from a nearby bb equivalent of the Y(4260)? > search for Z + b1,2  B ( * ) B ( * ) > are there corresponding Z + c1,2 states produced in Y(4260) decays? - if so, do these have strong decays to  + h c ?  Precision exclusive cross sections from ISR (Galina Pakhlova’s talk)  …

9 remaining “narrow” states open charm threshold  c2 ( 1 D 2 2 -+ )  c2  DD violates P   +  -  c ~30%  c2 ( 3 D 2 2 -- )  c2  DD violates P   +  -  ~10%   c1 ~70% Eichten, Lane & Quigg PRL 89, 162002 (2002)

10 Problem is production Spin=0 Spin=1  Spin=2 is highly suppressed  c1   J/  B +  K +  c2 = 0.022 ± 0.007 factorization penalty B (B +  K +  c2 ) B (B +  K +  c1 ) M(  J/  ) 2308±53 evts 33±11 evts naïve expectation:  c2 / X(3872) production ratio similar to that for X(3872) /  ’

11 Belle ~5000 evts ~170 evts mostly combinatoric bkgd X(3872)   +  - J/   ’   +  - J/  Belle II ~5000 evts ~?? evts  c2   +  - J/  X(3872)   +  - J/  -2011 -2018

12 what is the J PC of the X(3872)? J. Rosner PRD 70, 092023 (2004)   K  with ~50 ab -1, the error bars will be the same size as the dots     2 /dof =0.56/4  2 /dof =1.56/4  2 /dof =5.24/4  2 /dof =4.60/4

13 X(3872)   J/  (sub-threshold) = 0.8 ± 0.3  N(       )=2.0+0.8 B( X 3872   J/  ) B (X 3872   J/  ) S-wave (1 ++ ):  2 /dof = 10.2/5 (7%) P-wave (2 -+ ):  2 /dof = 3.5/5 (62%) BaBar (PRD 82, 011101) Belle (PRD 84, 052004) M(  +  - ) S-wave P-wave M(  +  -  0 )    +  -  0 line shapefits to    +  - line shape with  interf. Need >10x the statistics to start addressing the issues Pyungwon Ko discussed on Wed. PM

14 Width of the X(3872)   out = -0.53+0.11 MeV   ’ (PDG) Belle:  ’ width measurement with ~4500  ’   +  - J/  events using 3D fit We expect ~5000 X(3872)   +  - J/  events by ~2019

15 What about LHCb? ~200 events/fb -1 = 100 evts/yr (??) Matthew Needham’s talk, this meeting expect ~500 X(3872)   +  - J/  events by the 2012 LHC shutdown data samples similar in size to Belle II’s after that

16 What is the Y(4260)? Y(4260) BaBar PRL95, 142001 (2005) M=4259  8 +2 MeV  = 88  23 +6 MeV -6 -9  (Y 4260      J/  ) > 1.0 MeV @ 90% CL X.H. Mo et al, PL B640, 182 (2006) e + e -  ISR  +   J/  Huge by charmonium standards BES PRL 88, 101802 (2006) 4260 No sign of Y(4260)  D ( * ) D ( * ) _  (e+e-  hadrons)  (e+e-   +  -) BES data BaBar

17 N(  4S )N(  +  -  1S ) B (Y 4S   1S )  (Y 4S   1S )  theory 535x10 6 52 ± 109 ± 2 x10 -5 1.8 ± 0.4 keV1.5 ± 0.1 keV N(  5S )N(  +  -  1S ) B (“Y 5S”   1S )  (“Y 5S”   1S )  theory 6.6x10 6 325 ± 205.1 ± 0.3 x10 -3 560 ± 30 keV ~1 keV 325±20 evts! 2S 3S 4S  (4S)   (1S)  +   52±10 evts 2S 3S5S “  (4S)”   (1S)  +   4S  (5S) puzzles 477 fb -1 23.6 fb -1 A.Sokolov et al Belle: PRD75, 071103 K.F. Chen et al Belle: PRl 100, 112001

18 121.4 fb -1 X=  (1S)  (2S)  (3S) h b (2P) h b (1P)  +  - recoil mass in  (5S)  +  - + X MM(  +  - ) residuals MM(  +  - ) spectrum h b (nP)  J PC =1 +- large h b (nP) signals Belle: arXiv:1103.3419  PRL

19 Resonant structure of “  (5S)”  h b (nP)  +  - M(h b (1P)  + )  measure  (5S)  h b  yield in bins of MM(  ) data MeV/c 2 M 1 = MeV/c 2 M 2 = MeV  2 = MeV  1 = non-res.~0 PHSP ~BB* threshold _ ~B*B* threshold _ data PHSP M(h b (2P)  + ) non-res.~0 MeV/c 2 MeV MeV/c 2 MeV Belle: arXiv:1105.4583  PRL

20 “ Υ (5S)”  Υ (nS)    - Dalitz Plots Υ (1S)π + π - Υ (2S)π + π - Υ (3S)π + π - M 2 (π + π - ) > 0.10 GeV 2 M 2 (π + π - ) > 0.16 GeV 2 M 2 (π + π - ) > 0.20 GeV 2 9.43 GeV <MM(π + π - ) < 9.48 GeV10.05 GeV <MM(π + π - ) < 10.10 GeV10.33 GeV <MM(π + π - ) < 10.38 GeV Dalitz distributions for events in Y(nS) signal regions. M2(π+π-)M2(π+π-)M2(π+π-)M2(π+π-)M2(π+π-)M2(π+π-) To exclude contamination from gamma conversions we require: Belle: arXiv:1105.4583  PRL

21 Fit results M( Υ (2S)π) max M( Υ (3S)π) max M( Υ (1S)π) max  (5S)  (1S)  +  -  (5S)  (2S)  +  -  (5S)  (3S)  +  - M=10611  4  3 MeV  =22.3  7.7  4.0 MeV M=10609  2  3 MeV  =24.2  3.1  3.0 MeV M=10608  2  3 MeV  =17.6  3.0  3.0 MeV M=10657  6  3 MeV  =16.3  9.8  6.0 MeV M=10651  2  3 MeV  =13.3  3.3  4.0 MeV M=10652  1  2 MeV  =8.4  2.0  2.0 MeV Z b1 Z b2 Belle: arXiv:1105.4583  PRL preliminary:

22 Summary of parameter measurements Z b (10610) M=10607.2  2.0 MeV  =18.4  2.4 MeV Z b (10650) M=10652.2  1.5 MeV  =11.5  2.2 MeV [preliminary] m B +m B* 2m B* Belle: arXiv:1105.4583  PRL

23 B-B* & B*-B* molecules?? B B* b b _ B-B* “molecule” B* b b _ B*-B* “molecule” _ _ __ Z b (106010) ± Z b (106050) ± M Z b (106010) –(M B +M B* ) = + 3.6 ± 1.8 MeV M Z b (106010) –2M B* = + 3.1 ± 1.8 MeV Slightly unbound threshold resonances?? M=10608.1  1.7 MeV  =15.5  2.4 MeV M=10653.3  1.5 MeV  =14.0  2.8 MeV PDG: M B + M B* = 10604.5  0.6 MeV 2 M B* = 10650.2  1.0 MeV Belle preliminary

24 Are the Z b ’s really coming from ϒ (5S)? K.F. Chen et al (Belle), PRD82,091106R(2010) or some other, previously unseen, state with mass near M ϒ (5S) ?  (e + e -   +  - ϒ (nS))  (e + e -  hadrons) ϒ (5S) ~2  discrepancies in the peak mass and width Fitted parameters  5S : We will have to wait for SuperKEKB/Belle II i.e., b-quark equivalent of the Y(4260)

25 Are similar things happening with the Y(4260)? is it decaying to Z c  -,   + J/  ? ( &   + h c ?) + I c -quark counterpart of Z b + Y(4260) BaBar data

26 Belle results on Y(4260)   +  - J/  M 2 (  ± J/  ) (M D +M D* ) 2 see D.V.Bugg hep-ex/0701002 C.Z.Yuan et al (Belle), PRL99,182004 Inconclusive. Need ~ 10x more data, expected in ~2018

27 Summary

28 Quarkonia states from KEKB X(3872) Z + (4430) Z b (10610) Z b (10650)  c ’(3640) h b (1P) h b (2P) Y(4660)  c2 ’(3930) Y(3940) Z 1 (4050) Z 2 (4250) Y(3915)  b (9400)

29 … and from PEP II Y(4260) BaBar data Y(4260)  b2 (1D) b(1S0)b(1S0) h b (1P) * Y4360)

30 B-factories have uncovered a lot of unanticipated puzzles about quarkonium Wednesday AM session demonstrated that these run pretty deep XYZ -2011

31 Hopefully, Super-KEKB & SuperB will help us get to the bottom of all this new insights -2021

32 Thank you Danke Schön 감사합니다 どもぅ ありがとぅ 謝謝


Download ppt "Prospects for quarkonia at SuperKEKB Stephen Lars Olsen Seoul National University Heavy Quarkonium 2011, 4-7 October, GSI, Darmstadt."

Similar presentations


Ads by Google