Download presentation
Presentation is loading. Please wait.
Published byOsborne Mathews Modified over 8 years ago
1
Prospects for quarkonia at SuperKEKB Stephen Lars Olsen Seoul National University Heavy Quarkonium 2011, 4-7 October, GSI, Darmstadt
2
e- 7 GeV 2.6 A e+ 4 GeV 3.6 A x 40 Increase in Luminosity SuperKEKB Colliding bunches Damping ring Low emittance gun Positron source New beam pipe & bellows Belle II New IR TiN-coated beam pipe with antechambers Redesign the lattices of both rings to reduce the emittance Add / modify RF systems for higher beam current New positron target / capture section New superconducting /permanent final focusing quads near the IP Inject low emittance electrons Inject low emittance positrons Replace short dipoles with longer ones (LER)
3
electron (7GeV) positron (4GeV) KL/ muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps) Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd) Central Drift Chamber He(50%):C 2 H 6 (50%), Small cells, long lever arm, fast electronics EM Calorimeter: CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps) Vertex Detector 2 layers DEPFET + 4 layers DSSD Beryllium beam pipe 2 cm diameter Belle II Detector
4
Belle II versus Belle II more background hits, but manageable Less Coulomb scattering Pixel detector closer to the beam pipe Belle Belle II 1.0 2.0 0 30 m 65 m p sin( ) 5/2 [GeV/c] [m][m] + - 4S e=e= e-e- assign tracks to individual B mesons reduce combinatoric backgrounds
5
SuperKEKB Construction Schedule FY2010(H22)FY2011(H23)FY2012(H24)FY2013(H25)FY2014(H26) MR commissioning DR commissioning Linac commissioning Remove shields Set shields MR Tunnel Disassemble KEKB Beam Pipe Magnet QCS Monitor Floor Survey & base plate Installation, system check, cabling etc. Baking & TiN coating R&D Fabrication alignment Installation, cabling Field measurement RF Infrastructure Fabrication R&D,designFabrication Installation, alignment etc. Field measurement R&D Fabrication, installation Fabrication, rearrangement etc. R&D,Prototype,test DesignBuilding Construction Cooling system -2011 -2014 1 st beam in ~3 years
6
Belle II Construction Schedule 6 Designed to match the machine commissioning schedule and keep up with flavor physics at LHC Hamamatsu MCP-PMT end-plate ready for drilling DEPFET Pixel module DSSD-sensor+APV25 ECL electronics KLM module 0
7
Y. Ohnishi ~ 10 times more data ~50 times more data with data quality similar to that of Belle but with reduced combinatoric bkg expectation -2014 -2016: -2021:
8
What do we do with all this data? “Unfinished business” 2 & 2 remaining narrow states > c0 ‘ (via c0 DD) & c1 ’ (via c1 ’ D*D)? X(3872) properties > J PC = 1 ++ or 2 -+ ? > improved width measurement > line-shape for X(3872) DD* > other decay modes “ ϒ (5S)” Z + b1,2 - > are these from the ϒ (5S)?.. or from a nearby bb equivalent of the Y(4260)? > search for Z + b1,2 B ( * ) B ( * ) > are there corresponding Z + c1,2 states produced in Y(4260) decays? - if so, do these have strong decays to + h c ? Precision exclusive cross sections from ISR (Galina Pakhlova’s talk) …
9
remaining “narrow” states open charm threshold c2 ( 1 D 2 2 -+ ) c2 DD violates P + - c ~30% c2 ( 3 D 2 2 -- ) c2 DD violates P + - ~10% c1 ~70% Eichten, Lane & Quigg PRL 89, 162002 (2002)
10
Problem is production Spin=0 Spin=1 Spin=2 is highly suppressed c1 J/ B + K + c2 = 0.022 ± 0.007 factorization penalty B (B + K + c2 ) B (B + K + c1 ) M( J/ ) 2308±53 evts 33±11 evts naïve expectation: c2 / X(3872) production ratio similar to that for X(3872) / ’
11
Belle ~5000 evts ~170 evts mostly combinatoric bkgd X(3872) + - J/ ’ + - J/ Belle II ~5000 evts ~?? evts c2 + - J/ X(3872) + - J/ -2011 -2018
12
what is the J PC of the X(3872)? J. Rosner PRD 70, 092023 (2004) K with ~50 ab -1, the error bars will be the same size as the dots 2 /dof =0.56/4 2 /dof =1.56/4 2 /dof =5.24/4 2 /dof =4.60/4
13
X(3872) J/ (sub-threshold) = 0.8 ± 0.3 N( )=2.0+0.8 B( X 3872 J/ ) B (X 3872 J/ ) S-wave (1 ++ ): 2 /dof = 10.2/5 (7%) P-wave (2 -+ ): 2 /dof = 3.5/5 (62%) BaBar (PRD 82, 011101) Belle (PRD 84, 052004) M( + - ) S-wave P-wave M( + - 0 ) + - 0 line shapefits to + - line shape with interf. Need >10x the statistics to start addressing the issues Pyungwon Ko discussed on Wed. PM
14
Width of the X(3872) out = -0.53+0.11 MeV ’ (PDG) Belle: ’ width measurement with ~4500 ’ + - J/ events using 3D fit We expect ~5000 X(3872) + - J/ events by ~2019
15
What about LHCb? ~200 events/fb -1 = 100 evts/yr (??) Matthew Needham’s talk, this meeting expect ~500 X(3872) + - J/ events by the 2012 LHC shutdown data samples similar in size to Belle II’s after that
16
What is the Y(4260)? Y(4260) BaBar PRL95, 142001 (2005) M=4259 8 +2 MeV = 88 23 +6 MeV -6 -9 (Y 4260 J/ ) > 1.0 MeV @ 90% CL X.H. Mo et al, PL B640, 182 (2006) e + e - ISR + J/ Huge by charmonium standards BES PRL 88, 101802 (2006) 4260 No sign of Y(4260) D ( * ) D ( * ) _ (e+e- hadrons) (e+e- + -) BES data BaBar
17
N( 4S )N( + - 1S ) B (Y 4S 1S ) (Y 4S 1S ) theory 535x10 6 52 ± 109 ± 2 x10 -5 1.8 ± 0.4 keV1.5 ± 0.1 keV N( 5S )N( + - 1S ) B (“Y 5S” 1S ) (“Y 5S” 1S ) theory 6.6x10 6 325 ± 205.1 ± 0.3 x10 -3 560 ± 30 keV ~1 keV 325±20 evts! 2S 3S 4S (4S) (1S) + 52±10 evts 2S 3S5S “ (4S)” (1S) + 4S (5S) puzzles 477 fb -1 23.6 fb -1 A.Sokolov et al Belle: PRD75, 071103 K.F. Chen et al Belle: PRl 100, 112001
18
121.4 fb -1 X= (1S) (2S) (3S) h b (2P) h b (1P) + - recoil mass in (5S) + - + X MM( + - ) residuals MM( + - ) spectrum h b (nP) J PC =1 +- large h b (nP) signals Belle: arXiv:1103.3419 PRL
19
Resonant structure of “ (5S)” h b (nP) + - M(h b (1P) + ) measure (5S) h b yield in bins of MM( ) data MeV/c 2 M 1 = MeV/c 2 M 2 = MeV 2 = MeV 1 = non-res.~0 PHSP ~BB* threshold _ ~B*B* threshold _ data PHSP M(h b (2P) + ) non-res.~0 MeV/c 2 MeV MeV/c 2 MeV Belle: arXiv:1105.4583 PRL
20
“ Υ (5S)” Υ (nS) - Dalitz Plots Υ (1S)π + π - Υ (2S)π + π - Υ (3S)π + π - M 2 (π + π - ) > 0.10 GeV 2 M 2 (π + π - ) > 0.16 GeV 2 M 2 (π + π - ) > 0.20 GeV 2 9.43 GeV <MM(π + π - ) < 9.48 GeV10.05 GeV <MM(π + π - ) < 10.10 GeV10.33 GeV <MM(π + π - ) < 10.38 GeV Dalitz distributions for events in Y(nS) signal regions. M2(π+π-)M2(π+π-)M2(π+π-)M2(π+π-)M2(π+π-)M2(π+π-) To exclude contamination from gamma conversions we require: Belle: arXiv:1105.4583 PRL
21
Fit results M( Υ (2S)π) max M( Υ (3S)π) max M( Υ (1S)π) max (5S) (1S) + - (5S) (2S) + - (5S) (3S) + - M=10611 4 3 MeV =22.3 7.7 4.0 MeV M=10609 2 3 MeV =24.2 3.1 3.0 MeV M=10608 2 3 MeV =17.6 3.0 3.0 MeV M=10657 6 3 MeV =16.3 9.8 6.0 MeV M=10651 2 3 MeV =13.3 3.3 4.0 MeV M=10652 1 2 MeV =8.4 2.0 2.0 MeV Z b1 Z b2 Belle: arXiv:1105.4583 PRL preliminary:
22
Summary of parameter measurements Z b (10610) M=10607.2 2.0 MeV =18.4 2.4 MeV Z b (10650) M=10652.2 1.5 MeV =11.5 2.2 MeV [preliminary] m B +m B* 2m B* Belle: arXiv:1105.4583 PRL
23
B-B* & B*-B* molecules?? B B* b b _ B-B* “molecule” B* b b _ B*-B* “molecule” _ _ __ Z b (106010) ± Z b (106050) ± M Z b (106010) –(M B +M B* ) = + 3.6 ± 1.8 MeV M Z b (106010) –2M B* = + 3.1 ± 1.8 MeV Slightly unbound threshold resonances?? M=10608.1 1.7 MeV =15.5 2.4 MeV M=10653.3 1.5 MeV =14.0 2.8 MeV PDG: M B + M B* = 10604.5 0.6 MeV 2 M B* = 10650.2 1.0 MeV Belle preliminary
24
Are the Z b ’s really coming from ϒ (5S)? K.F. Chen et al (Belle), PRD82,091106R(2010) or some other, previously unseen, state with mass near M ϒ (5S) ? (e + e - + - ϒ (nS)) (e + e - hadrons) ϒ (5S) ~2 discrepancies in the peak mass and width Fitted parameters 5S : We will have to wait for SuperKEKB/Belle II i.e., b-quark equivalent of the Y(4260)
25
Are similar things happening with the Y(4260)? is it decaying to Z c -, + J/ ? ( & + h c ?) + I c -quark counterpart of Z b + Y(4260) BaBar data
26
Belle results on Y(4260) + - J/ M 2 ( ± J/ ) (M D +M D* ) 2 see D.V.Bugg hep-ex/0701002 C.Z.Yuan et al (Belle), PRL99,182004 Inconclusive. Need ~ 10x more data, expected in ~2018
27
Summary
28
Quarkonia states from KEKB X(3872) Z + (4430) Z b (10610) Z b (10650) c ’(3640) h b (1P) h b (2P) Y(4660) c2 ’(3930) Y(3940) Z 1 (4050) Z 2 (4250) Y(3915) b (9400)
29
… and from PEP II Y(4260) BaBar data Y(4260) b2 (1D) b(1S0)b(1S0) h b (1P) * Y4360)
30
B-factories have uncovered a lot of unanticipated puzzles about quarkonium Wednesday AM session demonstrated that these run pretty deep XYZ -2011
31
Hopefully, Super-KEKB & SuperB will help us get to the bottom of all this new insights -2021
32
Thank you Danke Schön 감사합니다 どもぅ ありがとぅ 謝謝
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.