Download presentation
Presentation is loading. Please wait.
Published byHilda Gardner Modified over 8 years ago
1
Dilations 9-7 Warm Up Lesson Presentation Lesson Quiz
Holt McDougal Geometry Holt Geometry
2
Warm Up 1. Translate the triangle with vertices A(2, –1), B(4, 3), and C(–5, 4) along the vector <2, 2>. A'(4,1), B'(6, 5),C(–3, 6) 2. ∆ABC ~ ∆JKL. Find the value of JK.
3
Objective Identify and draw dilations.
4
Recall that a dilation is a transformation that changes the size of a figure but not the shape. The image and the preimage of a figure under a dilation are similar.
5
Example 1: Identifying Dilations
Tell whether each transformation appears to be a dilation. Explain. A. B. No; the figures are not similar. Yes; the figures are similar and the image is not turned or flipped.
6
Check It Out! Example 1 Tell whether each transformation appears to be a dilation. Explain. a. b. Yes, the figures are similar and the image is not turned or flipped. No, the figures are not similar.
7
For a dilation with scale factor k, if k > 0, the figure is not turned or flipped. If k < 0, the figure is rotated by 180°. Helpful Hint
9
A dilation enlarges or reduces all dimensions proportionally
A dilation enlarges or reduces all dimensions proportionally. A dilation with a scale factor greater than 1 is an enlargement, or expansion. A dilation with a scale factor greater than 0 but less than 1 is a reduction, or contraction.
10
Example 2: Drawing Dilations
Copy the figure and the center of dilation P. Draw the image of ∆WXYZ under a dilation with a scale factor of 2. Step 1 Draw a line through P and each vertex. Step 2 On each line, mark twice the distance from P to the vertex. W’ X’ Step 3 Connect the vertices of the image. Y’ Z’
11
Step 1 Draw a line through Q and each vertex.
Check It Out! Example 2 Copy the figure and the center of dilation. Draw the dilation of RSTU using center Q and a scale factor of 3. Step 1 Draw a line through Q and each vertex. R’ S’ Step 2 On each line, mark twice the distance from Q to the vertex. Step 3 Connect the vertices of the image. T’ U’
12
Check It Out! Example 3 What if…? An artist is creating a large painting from a photograph into square and dilating each square by a factor of 4. Suppose the photograph is a square with sides of length 10 in. Find the area of the painting. The scale factor of the dilation is 4, so a 10 in. by 10 in. square on the photograph represents a 40 in. by 40 in. square on the painting. Find the area of the painting. A = l w = 4(10) 4(10) = 40 40 = 1600 in2
14
If the scale factor of a dilation is negative, the preimage is rotated by 180°. For k > 0, a dilation with a scale factor of –k is equivalent to the composition of a dilation with a scale factor of k that is rotated 180° about the center of dilation.
15
Example 4: Drawing Dilations in the Coordinate Plane
Draw the image of the triangle with vertices P(–4, 4), Q(–2, –2), and R(4, 0) under a dilation with a scale factor of centered at the origin. The dilation of (x, y) is
16
Graph the preimage and image.
Example 4 Continued Graph the preimage and image. P P’ Q’ R’ R Q
17
Check It Out! Example 4 Draw the image of the triangle with vertices R(0, 0), S(2, 1), T(3, -1), and U(1,-1) under a dilation centered at the origin with a scale factor of -3.
18
Lesson Quiz: Part I 1. Tell whether the transformation appears to be a dilation. yes 2. Copy ∆RST and the center of dilation. Draw the image of ∆RST under a dilation with a scale of .
19
Lesson Quiz: Part II 3. A rectangle on a transparency has length 6cm and width 4 cm and with 4 cm. On the transparency 1 cm represents 12 cm on the projection. Find the perimeter of the rectangle in the projection. 240 cm 4. Draw the image of the triangle with vertices E(2, 1), F(1, 2), and G(–2, 2) under a dilation with a scale factor of –2 centered at the origin.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.