Download presentation
Presentation is loading. Please wait.
Published byKelley Robertson Modified over 8 years ago
1
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 1 Polarimeter Studies for TESLA O General Considerations O Compton Polarimetry O The TDR Baseline Compton Polarimeter O Downstream (Extraction Line) Studies Polarimeter Concept for NLC Beam-Beam Depolarization Effects
2
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 2 Spin Motion Spin vector must be vertical in the damping ring Spin Rotator in the transfer line to the linac: manipulate spin direction for any desired orientation at the experiment must compensate all technical spin rotation effects along the machine requires fast polarimeter at the high-energy end for efficient tune-up
3
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 3 Spin motion along the accelerator
4
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 4 Suitable Polarimeter Locations most favorable upstream location: z = - 630 m can use beam line magnets as spectrometer elements has excellent infrastructure for polarimetry
5
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 5 Alignment Tolerances Beam-Beam Effects tight, but within machine tolerances estimated depolarization: 0.25% upstream polarimetry should be ok
6
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 6 Compton Polarimetry Kinematics
7
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 7 Compton Polarimetry Cross Sections, Spin Asymmetries - 1 < P < + 1 - 1 < < + 1
8
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 8
9
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 9 The TDR Baseline Compton Polarimeter Layout of the configuration
10
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 10 luminosity for pulsed lasers ( with finite laser crossing angle)
11
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 11 Laser parameters laser schematic of TTF injector gun: operates at nominal pulse & -bunch pattern of TESLA
12
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 12 Laser for TTF injector gun S. Schreiber et al. NIM A 445 (2000) 427 t = 8 ps
13
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 13 electron detector: gas Cerenkov calibration scheme (proposed)
14
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 14 The Ellerhoop Campus The TDR Baseline Compton Polarimeter
15
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 15 The TDR Baseline Compton Polarimeter Summary table For details: V. Gharibyan, N. Meyners, K.P. Schüler, www.desy.de/~lcnotes/notes.html LC-DET-2001-047
16
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 16 Downstream (Extraction Line) Studies for TESLA single beam polarimetry: feasible beam-beam polarimetry: impossible for TESLA at zero crossing angle issues to address: laser beam topology detector location degraded beam halo
17
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 17 Downstream (Extraction Line) Studies
18
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 18 Downstream ( Extraction Line ) Studies: Laser Beam Topology 9 90° 100 mrad Laser (100 mrad) Laser (90°)
19
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 19 Downstream (Extraction Line) Studies Detector at z = 65 m
20
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 20 Downstream (Extraction Line) Studies 250 GeV nominal disrupted beam: 40 000 events from N. Walker, distributions at e+e- IP
21
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 21 Downstream (Extraction Line) Studies Extrapolated background For standard 20 mm x 20 mm collimator aperture
22
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 22 Downstream (Extraction Line) Studies green laser, head-on collision
23
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 23 Conclusions TDR Baseline Polarimeter (630 m upstream) Precision of 0.5% should be straightforward, 0.25% may be possible with corrections Works equally well for e- and e+ Excellent infrastructure, robust facility Very fast Downstream (Extraction Line) Studies Single beam polarimetry appears feasible Disrupted beam polarimetry is impossible for TESLA beam extraction (with zero crossing angle geometry)
24
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 24
25
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 25 Beam-Beam Depolarization: Kathleen Thompson: SLAC-PUB-8761 (Jan. 2001) (see also Yokoy & Chen: SLAC-PUB-4692) NLC-500: outgoing e- depolarization: BMT ST TOTAL BMT ST TOTAL (analytic results) (simulation results) NLC-A 0.6% 0.4% 1.1% 0.4% 0.5% 0.9% NLC-B 0.8% 0.4% 1.1% 0.5% 0.4% 0.9% NLC-C 0.9% 0.3% 1.1% 0.5% 0.3% 0.9% NLC-500: luminosity-weighted e- beam depolarization: BMT ST TOTAL BMT ST TOTAL (analytic results) (simulation results) NLC-A 0.2% 0.1% 0.3% 0.1% 0.1% 0.2% NLC-B 0.2% 0.1% 0.3% 0.1% 0.1% 0.2% NLC-C 0.2% 0.1% 0.3% 0.1% 0.1% 0.2% P (downstream) 4 x P (lumi-weighted) Upstream value is much closer to lumi-weighted polarization!
26
LCWS - 2004 Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 26 Summary on beam-beam effects Upstream polarimeter expected to measure 0.2% higher than lumi-weighted value Downstream polarimeter expected to measure 0.9% lower than upstream, and 0.7% lower than lumi-weighted value upstream vs downstream polarimetry Therefore, for the typical case with both beams interacting, an upstream polarimeter measurement will need less correction. However, only a downstream polarimeter can measure the actual degree of depolarization, by comparison btw interacting and non-interacting (single beam) bunch data.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.