Download presentation
1
Chapter 3 Experimental Error
2
- Significant figures - Precision (Reproducibility) - Accuracy (Error) - Uncertainty
3
3-1 Significant Figures Significant figures: minimum number of digits required to express a value in scientific notation without loss of accuracy (with the appropriate accuracy). Guidelines for Sig. Figs., when looking at a number 1) All nonzero digits are significant figures 142.7 = x 102 = x10-6 4 significant figures (sf) Zeros are simple place holders 9.25 x 104 9.250 x 104 x 104 (3 sf) 92500 (4 sf) (5 sf) 2) Zeros are counted as significant figures only if: i) occur between other digits in the number ii) occur at the end of a number on the right-hand side of the decimal point 0.1060 (3 sf) (4 sf)
4
9.25 × 104 3 significant figures 9.250 × 104 4 significant figures
The number of significant figures is the minimum number of digits needed to write a given value in scientific notation without loss of precision. 92, 500 9.25 × 3 significant figures 9.250 × 4 significant figures × 5 significant figures Zeros are significant 1) in the middle of a number, 2) at the end of a number on the right-hand side of a decimal point.
5
3-2 Significant Figures in Arithmetic
How many digits to retain in the answer after you have performed arithmetic operations with your data? Addition and Subtraction:the same decimal place in the final answer 1.362 × 10 -4 × 10 -4 4.473 × 10 -4 5.345 12.073 7.26 × 10 14 -6.69 × 10 14 0.57 × 10 14 (F) (F) (Kr) 1.632 × 105 × 103 × 106 × × × ×
6
- Multiplication and Division
In multiplication and division, we are normally limited to the number of digits contained in the number with the fewest significant figures. 3.26 × 10 -5 ×1.78 5.80 × 10-5 × 1012 × × × 10-6 34.60 ÷ 14.05 - Logarithms and antilogarithms IF n = 10a, then we say that a is the base 10 logarithm of n :
7
A logarithm is composed of a characteristic and a mantissa.
The characteristic is the integer part and the mantissa is the decimal part log 339= log 3.39×10-5= Characteristic Mantissa Characteristic Mantissa = = = =0.470 =340(339.6) =339(338.8) =338(338.1) antilog (-3.42) = = 3.8 × 10 -4 log = antilog4.37=2.3 × 10 4 Log1 237= =2.3 × 10 4 Log3.2= =2.51 × 10 -3
8
Significant Figures and Graphs
9
(and maybe uncontrollable)
3-3 Types of Error Experimental error from uncertainties of measurements - SYSTEMATIC ERROR: Systematic error , also called determinate error arises from a flaw in equipment or the design of experiment. - Random error: called indeterminate error arises from uncontrolled (and maybe uncontrollable) (Gross errors) ⇒ mainly originated by person ⇒ statistical calibration
10
Box 3-1. Case study : systematic error in Ozone Measurement
Systematic errors: determinate error ⇒ definite value, assignable cause. ⇒ bias -> 모든 결과에 같은 크기의 영향을 미치며, 부호를 가짐. Box 3-1. Case study : systematic error in Ozone Measurement
11
Sources of systematic errors
Three types of systematic errors ) instrumental errors ) method errors ) personal errors
12
■ Instrumental errors ⇒ measuring device error
Ex) ① Pipet, burette, mass flask, etc. Reasons : The calibration temp. is nonequal to the measuring temp. Dry or heating cause the distortion of glass Contamination inside surface of vassel ② Electronic instrument error Reasons: potential change by dry cell life time Wrong calibration electric devise error by temperature change Noise from AC power source ③ Instrument operation in error conditions 이유: pH meter in strong acid solutions -> acid error ⇒ vibration → detectable, correctable
13
■ Method errors ⇒ From nonideal behaviors of reactions and reagents.
⇒ Slow reaction, incomplete reaction, using unstable chemical, nonselectiveity of reagents, side reactions, etc.. ⇒ The most difficult to remove it. Ex) using excess reagents - Due to chemical properties of nicotinic acid – degradation using hot and conc. H2SO4 - pyridine ring bearing nicotinic acid -> incomplete degradation. - Addition of potassium sulfate and elevate the boilng temp. -> complete degradation.
14
■ Personal errors ⇒ personal decision needs in many measurements.
⇒ error, toward one direction 예) • Reading in position of pointer between two points. • Color at the end point • liquid level of burret • Color sensitivity ⇒ personal bias 예) • 정밀도를 증가시키는 방향으로 눈금을 읽을 때 • 측정의 참값을 미리 마음 속으로 정해 놓을 때 • 숫자에 대한 편견이 있을 때 - 눈금 위의 바늘의 위치를 읽을 때 숫자 0과 5를 선호, - 큰 수보다 작은 수, - 홀수보다 짝수 선호
15
The effect of the systematic error on analytical results
⇒ Systematic errors is constant or proportional ⇒ constant errors size • 측정되는 양의 크기에 따라 달라지지 않음 • 절대오차는 시료크기에 대하여 일정 • 상대오차는 시료의 크기에 따라 변함 ⇒ proportional errors size • 분석에 사용된 시료의 크기에 따라 증가 또는 감소 • 절대오차는 시료크기에 따라 변함 • 상대오차는 시료의 크기에 대하여 일정
16
Detection of systematic instrumental & personal errors
⇒ Instrumental error • can be founded and corrected by calibration • periodical calibration • Instrumental error by interferences in samples → 단순한 검정으로 영향제거 불가능 ⇒ Personal error • It can be minimize by precaution, excise, etc. • Check instrument reading, notebook entries & calculations • chose the adequate method -- error minimizing
17
Analysis of standard samples
Detection of systematic method errors ■ Method errors Analysis of standard samples ⇒ The best way of estimating the bias of analytical method is by the analysis of standard reference materials(SRMs) ⇒ SRMs : 정확하게 잘 알려진 농도를 가지고 있는 analytes를 하나 또는 그 이상 포함한 물질 ⇒ 합성하여 사용 • 순수한 성분들을 혼합하여 조성을 알 수 있는 균일시료 제조 • 합성 표준물질의 조성은 분석시료의 조성과 거의 같아야 함 • 표준시료의 합성이 불가능하거나, 쉽지 않고 시간이 많이 걸리는 경우 가 있음 → 실제적이지 못할 수 있음 ⇒ • 미국 정부기관인 NIST(National Institute od Standards & Technology)에서 종 이상의 SRMs 공급 • 몇몇 시판 공급회사에서도 공급
21
105.4 Toxic Substances in Urine (powder form)
SRMs 2670a, 2671a and 2672a are for determining toxic substances in human urine. They consist of freeze-dried urine and are provided in sets of four 30 mL bottles -- two each at low and elevated levels. NOTE:The values listed for these SRMs apply only to reconstituted urine.
22
■ Independent analysis
⇒ 표준시료를 사용할 수 없을 경우 ⇒ 같은 시료를 또 다른 독립적이고 신뢰성 있는 분석법으로 분석 (parallel analysis) ⇒ 두 방법은 가능한 한 많이 달라야 함 → 두 방법에 모두 영향을 줄 수 있는 공통요인을 최소화 하기 위함 ⇒ 두 방법간의 차이가 random error 또는 방법에서 오는 bias 때문인지를 평가하기 위해 반드시 통계적 test를 실시 (7B-2)
23
■ Blank determinations
• reagents and solvents without analyte. • Similar condition of analyte environment (sample matrix): - >addition of sample constituents. ⇒ blank determination • every step in analysis : blank material analysis needs.
24
Precision and Accuracy
Precision describes the reproducibility of a result, if you measure A quantity several time and the values agree closely with on another your measurement is precise. Accrue describes how close a measured value is to the “true” value If a known stands is available , accuracy hoe close your value is to the known value.
25
Precision ⇒ 측정의 재현성(reproducibility of measurements)
⇒ 정확히 똑같은 방법을 이용하여 얻은 측정값들 사이의 일치성 ⇒ 반복시료를 사용하여 반복적인 측정을 함 • Three terms to describe the precision Standard deviation Variance Coefficient of variance (분산계수) ⇒ deviation from the mean (di)의 함수.
26
Absolute and Relative uncertainty
Absolute uncertainty expresses the margin of uncertainty associated with a measurement. Relative uncertainty compares the size of the absolute uncertainty with the size of its associated measurement.
27
3-4 Propagation of Uncertainty from Random Error
We can usually estimate or measure the random error associated with measurement, such as the length of an object or the temperature of a solution. - Addition and Subtraction 1.76 (± 0.03) (±0.02) -0.59(±0.02) 3.06(±e4) e1 e2 e3 Percent relative uncertainty=0.041 / 3.06 × 100= 1.3% 3.06 (± 0.04): absolute uncertainty, 3.06 (± 1 %): relative uncertainty
28
(EXAMPLE) Uncertainty in a Buret Reading
29
-Multiplication and Division
30
- Mixed Operations
34
Uncertainty for powers and roots: Uncertainty for logarithm:
Exponents and logarithms Uncertainty for powers and roots: (3-7) Uncertainty for logarithm: (3-8) (3-9) Uncertainty for Natural logarihm (3-10) Uncertainty For 10x: Uncertainty for ex (3-11)
36
3-5 Propagation of Uncertainty from Systematic Error
The standard deviation ( defined in section 4-1 ) for this distribution, Also called the standard uncertainty , is ±a√3= ±0.0003/ √3= ±
37
Uncertainty in molecular mass
38
- Uncertainty in Molecular Mass
39
Multiple Deliveries From One Pipet: The Triangular Distribution
The standard uncertainty ( standard deviation) in the triangular Distribution is ± a √6 = ±0.03 √6= ±0.012ml The standard uncertainty is ±4 × 0.012= ±0.048 ml , not ± √ = ±0.024ml Calibration improves certainty by removing the systematic error
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.