Presentation is loading. Please wait.

Presentation is loading. Please wait.

BARYON FORM FACTORS TWO GAMMA EXCHANGE RESOLVED THE DISCREPANCY BETWEEN THE DATA OBTAINED BY ROSENBLUTH SEPARATION AND POLARIZATION TRANSFER FOR G E (p)

Similar presentations


Presentation on theme: "BARYON FORM FACTORS TWO GAMMA EXCHANGE RESOLVED THE DISCREPANCY BETWEEN THE DATA OBTAINED BY ROSENBLUTH SEPARATION AND POLARIZATION TRANSFER FOR G E (p)"— Presentation transcript:

1 BARYON FORM FACTORS TWO GAMMA EXCHANGE RESOLVED THE DISCREPANCY BETWEEN THE DATA OBTAINED BY ROSENBLUTH SEPARATION AND POLARIZATION TRANSFER FOR G E (p) QUALITY DATA ON N(1440), N(1535) and some higher N* TRANSITION FORM FACTORS CONSISTENT RESULTS FOR THE STRANGENESS FORM FACTORS OF THE PROTON FROM SAMPLE, HAPPEX, A4 AND G0. CHALLENGE FOR THEORY CLEAR INDICATIONS FOR LONG RANGE ”PION CLOUD” IN ALL NUCLEON FORM FACTORS PRECISION DATA ON G E (n) NEW PRECISION DATA FOR g P (p) FORM FACTORS --- DVCS --- PARTON DISTRIBUTIONS

2 NEXT FEW YEARS NEW DATA ON THE FORM FACTORS IN THE TIME LIKE REGION OF Q 2 GLUON POLARIZATION TRANSVERSITY … COMPASS-II, FAIR

3 THEORIST’S FORM FACTORS CALCULATE FROM CURRENT MATRIX ELEMENTS –G E (Q 2 ) = (1+τ) 1/2 –G M (Q 2 )= (1+1/τ) 1/2 –τ = Q 2 /4 M 2) ELECTRIC FORM FACTORS IN THE BREIT FRAME –G E (Q 2 ) = ∫ d 3 R e iQ·R ρ(R), –G M (Q 2 ) =∫ d 3 R e iQ·R (1/2) –in the Breit frame, where Q 0 = 0 GOVERNING SINGULARITIES IN TIME-LIKE REGION

4 EXPERIMENTALISTS FORM FACTORS: SPACE-LIKE Q 2 DIFFERENTIAL CROSS SECTION dσ/dΩ = σ M { (G E 2 +τG M 2 ) /(1+τ)+2τ G M 2 tan 2 θ/2} –One-photon exchange approximation –forward-backward Rosenbluth separation SPIN POLARIZATION TRANSFER G E /G M = - ( P t / P l ) {(E + E’)/2 M} tan θ/2 –no forward-backward separation, but instrumental challenge

5 EXPERIMENTALISTS FORM FACTORS: TIME-LIKE Q 2 M. Mirazita et al. 2005

6 AXIAL FORM FACTOR RELATION TO PION DECAY LO ChPT (PCAC) B. Juliá-Díaz et al., PRC 70

7 EXOTIC FORM FACTORS THE STRANGENESS FORM FACTORS CONTRIBUTION FROM SS - PAIRS THE ANAPOLE FORM FACTOR AXIAL PART IN ELECTROMAGNETIC CURRENT J  = … (G F /M p 2 ) F A (Q 2 )(Q 2   -Q Q   )   arises from PV quark interactions TRANSVERSITY »  q[P  S –P S  ]

8 I.A.Qattan et al, PRL 94, 142301 (2005) G E p /G M p EXPERIMENT

9 TWO PHOTON EXCHANGE P. Guichon & M. Vanderhaeghen PRL 91, 142303 (2003) Need only a 6% correction in the  dependent term in the differential cross section from TPE to resolve the discrepancy  = 1/1+2(1+  ) tan 2 (  /2)

10 HADRONIC CALCULATION Blunden et al, PRL 91, 142304 (2003) nucl/th&0506039 nucl-th/0506039

11 THE  (1232) CONTRIBUTION IS SMALL ! S. Kondratyuk et al, nucl-th/0506026

12 PARTONIC CALCULATION A.V.Afanasev et al, PRD 72,013008 (2005) Ratio of e - to e + scattering decisive! Exp’t planned at Novosibirsk

13 G E ON THE LATTICE ISOVECTOR FORM FACTOR C. Alexandrou (2005) PRELIMINARY

14 G M ON THE LATTICE ISOVECTOR FORM FACTOR C. Alexandrou (2005) PRELIMINARY

15 G E (n)

16 LONG RANGE STRUCTURE IN THE NUCLEON FORM FACTORS J. Friedrich & Th. Walcher, EPJA A17, 607 (2003)

17 THE PION CLOUD J.Friedrich & Th. Walcher, EPJA A17, 607 (2003)

18 POINCARÉ COVARIANT QUARK MODELS GENERATORS OF POINCARÉ TRANSFORMATIONS: H, P, J, K K: boosts CHOICE OF KINEMATIC SUBGROUP: INSTANT FORM KINEMATICS: P, J, K{H} O(3) LIGHT FRONT KINEMATICS: P, K, J{H} O(1,2) POINT FORM KINEMATICS: J, K, P{H} SO(1,3)

19 SU(6) quark model for instant, point and front form kinematics: fitted wave functions B. Julia-Diaz, D.O.R & F. Coester PRC 69, 035212 (2004)

20 BARYON PHENOMENOLOGY WITH DIFFERENT KINEMATICS B. Juliá-Díaz, F. Coester & DOR, PRC C69 (2004) 035212 SU(6) spin-isospin wave functions x (1 + P 2 /4 b 2 ) -a hyperspherical momentum P = ((4/3)(p 1 2 +p 2 2 +p 3 2 )) 1/2

21 G E (n) & Foldy term Consistent quark model demands covariant treatment of the boosts 1-2% mixed symmetry S-state Sufficient to fix the qqq quark model r n 2 exp = -0.1161 ± 0.0022 fm 2, r n 2 Foldy = -0.126 fm 2 solid: instant, dotted: point dashed: front S’: 2% instant,point, 1% front

22 GROUND STATE WAVE FUNCTION AND CONFINING POTENTIAL

23 Point form quark model form factors R.F.Wagenbrunn et al, hep-ph/0509047 Very small matter radius r 2 = 0.1 fm 2

24 AXIAL & INDUCED PSEUDOSCALAR FORM FACTORS J  = {G A (Q 2 )    5 – i (Q  /2 M) G P (Q 2 )  5 }  a g P (Q 2 ) = (m  / 2 M) G P (Q 2 ) MUON CAPTURE : Q 2 = - m  2

25 PROBLEM & RESOLUTION ChPT: g P = 8.3 § 0.2 N. Kaiser, PRC 67, 027002 (2003) TRIUMF RMC: g P = 12.2 § 1.1 D. H. Wright, PRC 57, 373 (1998) New result on ortho-para transition in μ - molecular H: factor 2.7 g P = 10.6 § 1.1 J.H.D. Clarke et al nucl-ex/0509025 (+ Triumf RMC) - Introduces problems with earlier data …

26 Quark model results for G A and G P M A =1.077 § 0.039 GeV/c 2 A.Liesenfeld et al, PL B 468, 20 (1999)

27  1232) !  N qqq quark model underestimates the transtion form factor by » 30 %  Pion cloud and/or sea-quarks

28 Sato-Uno-Lee PRC 67, 065201 (2003)  – N -  COUPLED CHANNEL CALCULATION

29 Coupled channel \pi-N-\Delta model

30 T. Sato and T.-S. H. Lee Nucl-th/0404025 HADRONIC COUPLED CHANNELS  -N-  MODEL

31 I.Aznauryuan, ANL talk 2005 Bates, CLAS, PDG

32 I.Aznauryuan, ANL talk 2005

33 NΔ TRANSITION FORM FACTOR ACCORDING TO QCD LATTICE CALCULATION C. Alexandrou et al, PRL 94, 020601 (2005)

34 C. Alexandrou et al., hep-lat/0509140

35 Effective field theory N V. Pascalutsa and M. Vanderhaeghen, hep-ph/0508060

36 I.Aznauryuan, ANL talk 2005 PRD C71, 015201 (2005) N(1440) HELICITY AMPLITUDES

37 N(1535) HELICITY AMPLITUDES I.G.Aznauryan (CLAS), PRD C71, 015201 (2005)

38 γ, Z 0 STRANGENESS FORM FACTORS

39 E. J. Beise et al, Prog. Part. Phys. 54, 289 (2005)

40 D. Armstrong & K.Carter, CERN Courier 45, 8 (2005) GO: PRL 95, 092001 (2005), A4: Prog.Part.Nucl.Phys. 55, 320 (2005) SAMPLE: PLB 583, 79 (2004), HAPPEX: PRC 69, 065501 (2004)

41 BUT μ s = G M s (0) SHOULD BE NEGATIVE ! ASYMMETRIC LONG RANGE FLUCTUATION … PSEUDOSCALAR MESON LOOP P↑P↑ +e -e/3 (strange quark) K+ Λ, Σ 0 » POSITIVE MAGNETIC MOMENT CONTRIBUTION ? NO... MULTIPLY BY – 3 ( NEGATIVE G M s !

42 D.Beck and R.D.McKeown, Ann Rev Nucl Part Sci 51, 189 (2001)

43

44 K,K* loops in the ”chiral” quark model μ s = - 0.046 nm L. Hannelius & DOR, PRC 62, 045204 (2000) QCD Lattice calculation with chiral extrapolation μ s = - 0.046 ± 0.019 nm D.B.Leinweber & al, PRL 94, 212001 (2005) ” tremendous challenge for future experiments”

45

46 SPIN DEPENDENT HYPERFINE INTERACTION LOWERS ANTISYMMETRIC SPIN STATES = -3 =+1 COLOR MAGNETIC HF INTERACTION: V= (2  / 9 m 2 )  s  1 ¢  2  (r) FLAVOR-SPIN INTERACTION...fits the exp’t spectrum V  = C   ij F i ¢ F j  i ¢  j, C  » 30 NUCLEON: = -2 = +10

47

48 Theis in the S-state, Not KΛ like! B.S.Zou & DOR, PRL 95, 072001 (2005)

49 G M (p) FOR TIME LIKE Q2 Fenice/ADONE E835/FNAL M. Mirazita et al, INFN preprint (2005)

50 G M (p) FOR TIME LIKE Q2

51 G M (n) FOR TIME LIKE Q 2 M. Mirazita et al, INFN preprint (2005)

52 F. Iachello & Q. Wan, PRC 69, 055204 (2004) G M (n) Vector meson pole + scalar meson pole phenomenology

53 SUMMARY TWO PHOTON EXCHANGE AFFECTS ROSENBLUTH SEPARATION OF G E, G M ALL FORM FACTORS INDICATE ”PION CLOUD” STRUCTURE IN BARYONS QCD LATTICE CALCULATIONS APPROACH EMPIRICAL NUCLEON FORM FACTORS REALISTIC ChPT EXTRAPOLATION TO SMALL QUARK MASS ESSENTIAL THE COMPONENT IN THE PROTON IS NOT A KΛ FLUCTUATION


Download ppt "BARYON FORM FACTORS TWO GAMMA EXCHANGE RESOLVED THE DISCREPANCY BETWEEN THE DATA OBTAINED BY ROSENBLUTH SEPARATION AND POLARIZATION TRANSFER FOR G E (p)"

Similar presentations


Ads by Google