Download presentation
1
Quadrilateral Foldable!
2
All Parallelograms have…
Opposite sides are congruent (AB = DC). Opposite angels are congruent (D = B). Consecutive angles are supplementary (A + D = 180°). If one angle is right, then all angles are right. The diagonals of a parallelogram bisect each other. Each diagonal of a parallelogram separates it into two congruent triangles. Includes: Rectangles, Rhombus, and Squares
3
Rectangle Characteristics
Equiangular Four right angles a parallelogram with at least one right angle a parallelogram with diagonals of equal length Diagonals bisect each other and are congruent
4
Rhombus Characteristics
4 equal straight sides. Opposite sides are parallel opposite angles are equal (it is a Parallelogram). Diagonals of a rhombus bisect each other at right angles.
5
All Squares have equal sides, opposite equal angles
two pairs of adjacent equal sides opposite sides parallel opposite sides equal, 4 right-angles Diagonals are perpendicular bisectors
6
Trapezoid Characteristics
exactly one pair of parallel sides Isosceles Trapezoids: The legs are congruent. The lower base angles are congruent. The upper base angles are congruent. Any lower base angle is supplementary to any upper base angle. The diagonals are congruent. Right Trapezoids: 2 right angles
7
Kite Characteristics 2 pairs of adjacent, congruent sides
One pair of opposite, congruent angles Rhombus and Squares
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.