Download presentation
Presentation is loading. Please wait.
Published byPeter Hutchinson Modified over 8 years ago
1
Bertram Blank CEN Bordeaux-Gradignan IVICFA 's Fridays: EXPERIMENTAL PHYSICS, October 3, 2014 Discovery of radioactive decays One-proton radioactivity Two-proton radioactivity Future studies
2
… off the valley of stability stable nuclei
3
… off the valley of stability stable nuclei unstable nuclei
4
… off the valley of stability stable nuclei unstable nuclei particle-unstable nuclei
5
Henry BecquerelPierre & Marie CurieErnest RutherfordOtto Hahn decay decay Fission Discovery of radioactivity
6
Prdicted by Goldansky in the 60’s Discovered in 1981 Exotic radioactivities Goldansky 1960 : Y.B. Zel’dovich and V. Goldansky predict exotic decay modes for nuclei at the proton drip-line : 1p radioactivity for odd Z nuclei 2p radioactivity for even Z nuclei Discovered in 2002
7
One-proton radioactivity
8
Proton-rich nuclei: One-proton radioactivity One-proton- emitter for odd Z from Z = 53 - 83
9
FMA in Argonne Fusion-evaporation reactions (e.g. 78 Kr + 92 Mo) Separation and selection of nuclei with Argonne FMA Correlation of implantation and decay in DSSD One-proton radioactivity T 1/2, E p
10
physics to be learnt Test of nuclear mass models Nuclear structure beyond particle stability - Sequence of single-particle levels and their energy - “j content” of nuclear wave function - Forme of nuclear potential quantum tunneling through 3D barrier model calculations to determine single- particle level sequence 29 proton emitters experimentally observed and studied One-proton radioactivity
11
Two-proton radioactivity
12
two 2p emission types: - ground state emission long-lived: 45 Fe, 48 Ni, 54 Zn short-lived: 6 Be, 12 O, 16 Ne, 19 Mg - emission from excited states β-delayed: 22 Al, 31 Ar, … others: 14 O, 18 Ne, 17 Ne to be measured: proton energies proton-proton angle sequential emission: three-body decay: 2 He emission: Two-proton radioactivity
13
Emission of one proton not possible « 2 He» emission: common tunneling separation after barrier Two-proton radioactivity X
14
parameters: Q value tunnel probability -decay half-life best candidats: 45 Fe, 48 Ni, 54 Zn possible candidats: 42 Cr, 49 Ni Two-proton radioactivity candidates
15
Two-proton emission for even-Z nuclei Proton-rich nuclei
16
GSI GANIL Experimental facilities projectile fragmentation NSCL
17
Two-proton radioactivity of 45 Fe at GANIL and GSI
18
Primary beam: 58 Ni @ 75 MeV/A intensity Ae SISSI target: nat Ni 200 g cm spectrometer LISE3 : degrader Be (50 m) Wien filter detection setup silicon telescope identification of implanted fragments DSSSD (X-Y): 2 x 16 x 3 mm - veto for light particles - residual energy, x-y position - energy loss - time of flight: micro-channel plate detectors RF cyclotron GANIL / LISE3
19
identification of 22 45 Fe implantations identification of 45 Fe: Two-proton radioactivity of 45 Fe: GANIL data J. Giovinazzo et al., PRL 89 (2002) 102501
20
Decay time spectrum spectrum: T 1/2 = 16.7±7.0 ms 1.14 MeV peak J. Giovinazzo et al., PRL89 (2002) 102501 Q value in agreement with prediction no pile-up for peak half-life short enough for 2p decay data for second decay in agreement with daughter decay no ’s in coincidence with 1.14 MeV peak Decay energy spectrum Two-proton radioactivity of 45 Fe: GANIL data
21
6 implantations M. Pfützner et al., EPJA14 (2002) 279 A/Z 0 1 2 3 4 5 6 0 Energy (MeV) 5 correlated decay events: four 2p events one -delayed decay Two-proton radioactivity of 45 Fe: GSI data
22
Q 2p = 1.14 MeV T 1/2 = 3.8 ms discovery of two-proton radioactivity: 2002 Decay of 45 Fe
23
2004 : Decay of 54 Zn and 48 Ni at GANIL with the same set-up 48 Ni 54 Zn B. Blank et al., Phys. Rev. Lett. 94 (2005) 232501 C. Dossat et al, Phys. Rev. C 75 (2005) 054315 Two-proton decay of 54 Zn and 48 Ni
24
Grigorenko et al. Brown and Barker Rotureau et al. agreement with 3-body model, SMEC, and R-matrix model Comparison with theory 45 Fe 48 Ni 54 Zn
25
However: - only total decay energy, half-life, no beta, daughter decay - no individual energies - no proton-proton angle TPC new development… what one would like to measure: - individual protons - proton energies - proton-proton angle
26
Gas ionisation Drift of electrons Detection on the X-Y plan ion identification drift of ionisation electrons emitter protons X-Y detector electric field Tracking in 3D ! Energy signals Track particle in 2D + Time signals Z component B. Blank et al, Nucl. Instr. And Meth. A 613 (2010) 65 Time projection chamber
27
GANIL/LISE3 experiments with the TPC Time projection chamber
28
Two-proton radioactivity of 45 Fe at GANIL with the TPC
29
Y strip numberX strip number Energy signal (a.u.) Y strip number X strip number Energy signal (a.u.) Analysis of TPC events X proton2 proton1 beam Y Z Implantation Decay
30
45 Fe two-proton event in TPC of CENBG L. Audirac et al.
31
45 Fe two-proton event in TPC of CENBG L. Audirac et al.
32
45 Fe two-proton event in TPC of CENBG L. Audirac et al.
33
45 Fe two-proton event in TPC of CENBG L. Audirac et al.
34
average = 50% sigma = 7,2 % perfect energy sharing between the two protons energy fraction (%) Energy sharing between the two protons Grigorenko et al. exp.
35
A two-hump structure is observed, as predicted by the model of Grigorenko 3D angular distribution of the two protons L. Audirac et al., EPJA 48 (2012) 179
36
Two-proton radioactivity of 45 Fe at NSCL with the OTPC
37
45 Fe Daughter decay 2p M. Pfützner et al. Daughter decay 45 Fe two-proton events in OTPC of Warsaw at NCSL
38
K. Miernik et al., PRL 99 (2007) 192501 45 Fe two-proton correlations with OTPC at NSCL
39
Two-proton radioactivity of 54 Zn at GANIL with the TPC
40
P. Ascher et al. 54 Zn two-proton event in TPC of CENBG
41
P. Ascher et al. 54 Zn two-proton event in TPC of CENBG
42
P. Ascher et al. 54 Zn two-proton event in TPC of CENBG
43
P. Ascher et al. 54 Zn two-proton event in TPC of CENBG
44
P. Ascher et al. 54 Zn two-proton event in TPC of CENBG
45
P. Ascher et al. 54 Zn two-proton event in TPC of CENBG
46
perfect energy sharing between the two protons perfect agreement with 3-body model (L.V. Grigorenko et al.) Energy sharing between the two protons P. Ascher et al., PRL 107 (2011) 102502
47
3D angular distribution from 3 -body model of Grigorenko et al. Projected angle between the two protons P. Ascher et al. strong p 2 content study of the wave function
48
Conclusions observation of 2p radioactivity Q values mass model tests test of wave function strong p 2 contribution, not expected in simple SM
49
Nuclei of interest: 59 Ge, 63 Se, 67 Kr Production: 78 Kr fragmentation at 360 MeV/u, 100pnA Separation: BigRIPS Detection: standard BigRIPS detection + silicon telescope with DSSSD (1mm) + Germanium detectors Settings: 59 Ge, rate = 9 ppd Settings: 63 Se, rate = 6 ppd Settings: 67 Kr, rate = 4 ppd New isotopes: 59 Ge, 63 Se, 68,67 Kr
50
New TPC based on ASICs and a pad structure J. Pibernat, CENBG General electronics for TPCs: GET 16384 channels
51
demonstratorprototype 2048 channels (12.8 x 6.4 cm 2 ; 2 CoBo ; 8 AsAd) full-size detector16384 pads (16 CoBo ; 64 AsAd) various geometries (for 2-proton radioactivity or reaction studies) schematic view of the detector for 2-proton radioactivity studies Demonstrator and full-size detector
52
5*10 11 pps of primary beam, 600 MeV/A, 4 sec per pulse 4 g/cm 2 of Be 58 Ni: 48 Ni: 7*10 -4 pps 70 per day 78 Kr: 59 Ge: 1*10 -2 pps 1000 per day 63 Se: 5*10 -3 pps 500 per day 67 Kr: 2*10 -3 pps 200 per day 92 Mo: 70 Sr: 5*10 -5 pps 5 per day 71 Sr: 1*10 -3 pps 100 per day 74 Zr: 2*10 -5 pps 2 per day 75 Zr: 6*10 -4 pps 60 per day 78 Mo: 6*10 -6 pps 0.6 per day 79 Mo: 1*10 -4 pps 10 per day 124 Xe: 97 Sn: 6*10 -6 pps 0.6 per day 98 Sn: 1*10 -4 pps 10 per day FAIR + SFRS … 2020…? Wie Brezelbacken….
53
Collaborations GANIL experiments CEN Bordeaux-Gradignan (France) GANIL Caen (France) IAP Bucharest (Romania) Warsaw University (Poland) NSCL-MSU (USA) University of Santiago di Compostella (Spain) IPN Orsay (France) LPC Caen (France) KU Leuven (Belgium) GANIL experiments CEN Bordeaux-Gradignan (France) GANIL Caen (France) IAP Bucharest (Romania) Warsaw University (Poland) NSCL-MSU (USA) University of Santiago di Compostella (Spain) IPN Orsay (France) LPC Caen (France) KU Leuven (Belgium) GSI experiment Warsaw University (Poland), GSI Darmstadt (Allemagne), CEN Bordeaux-Gradignan (France), GANIL Caen (France), ORNL (Tennessee / USA), Edinburg University (UK) GSI experiment Warsaw University (Poland), GSI Darmstadt (Allemagne), CEN Bordeaux-Gradignan (France), GANIL Caen (France), ORNL (Tennessee / USA), Edinburg University (UK) MSU experiment Warsaw University (Poland), MSU (USA), ORNL (Tennessee / USA), University of Tennessee (USA) MSU experiment Warsaw University (Poland), MSU (USA), ORNL (Tennessee / USA), University of Tennessee (USA)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.