Download presentation
Presentation is loading. Please wait.
Published byKatherine Hopkins Modified over 8 years ago
1
CompSci 100e 10.1 Binary Digits (Bits) l Yes or No l On or Off l One or Zero l 10010010
2
CompSci 100e 10.2 Data Encoding l Text: Each character (letter, punctuation, etc.) is assigned a unique bit pattern. ASCII: Uses patterns of 7-bits to represent most symbols used in written English text Unicode: Uses patterns of 16-bits to represent the major symbols used in languages world side ISO standard: Uses patterns of 32-bits to represent most symbols used in languages world wide l Numbers: Uses bits to represent a number in base two l Limitations of computer representations of numeric values Overflow – happens when a value is too big to be represented Truncation – happens when a value is between two representable values
3
CompSci 100e 10.3 Images, Sound, & Compression l Images Store as bit map: define each pixel RGB Luminance and chrominance Vector techniques Scalable TrueType and PostScript l Audio Sampling l Compression Lossless: Huffman, LZW, GIF Lossy: JPEG, MPEG, MP3
4
CompSci 100e 10.4 Memory management preview l Outside of this class, memory is a finite resource l 3 different types of storage with different lifetimes 1. Static: lives in static storage for the execution of the program 2. Local: lives in stack within a method or block 3. Dynamic: lives in heap starts with a new and ends with some deallocation Executable code Static Storage Heap Stack Unallocated
5
CompSci 100e 10.5 Decimal (Base 10) Numbers l Each digit in a decimal number is chosen from ten symbols: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } l The position (right to left) of each digit represents a power of ten. l Example: Consider the decimal number 2307 2 3 0 7 position: 3 2 1 0 2307 = 2 10 3 + 3 10 2 + 0 10 1 + 7 10 0
6
CompSci 100e 10.6 Binary (Base 2) Numbers l Each digit in a binary number is chosen from two symbols: { 0, 1 } l The position (right to left) of each digit represents a power of two. l Example: Convert binary number 1101 to decimal 1 1 0 1 position: 3 2 1 0 1101 = 1 2 3 + 1 2 2 + 0 2 1 + 1 2 0 =1 8 + 1 4 + 0 2 + 1 1= 8 + 4 + 1 = 13
7
CompSci 100e 10.7 Famous Powers of Two Images from http://courses.cs.vt.edu/~csonline/MachineArchitecture/Lessons/Circuits/index.html
8
CompSci 100e 10.8 Other Number Systems Images from http://courses.cs.vt.edu/~csonline/MachineArchitecture/Lessons/Circuits/index.html
9
CompSci 100e 10.9 Truth Tables Images from http://courses.cs.vt.edu/~csonline/MachineArchitecture/Lessons/Circuits/index.html
10
CompSci 100e 10.10 From bits to bytes to ints l At some level everything is stored as either a zero or a one A bit is a binary digit a byte is a binary term (8 bits) We should be grateful we can deal with Strings rather than sequences of 0's and 1's. We should be grateful we can deal with an int rather than the 32 bits that make an int l Int values are stored as two's complement numbers with 32 bits, for 64 bits use the type long, a char is 16 bits Standard in Java, different in C/C++ Facilitates addition/subtraction for int values We don't need to worry about this, except to note: Integer.MAX_VALUE + 1 = Integer.MIN_VALUE Math.abs(Integer.MIN_VALUE) != Infinity
11
CompSci 100e 10.11 More details about bits l How is 13 represented? … _0_ _0_ _1_ _1_ _0_ _1_ 2 4 2 3 2 2 2 1 2 0 Total is 8+4+1 = 13 l What is bit representation of 32? Of 15? Of 1023? What is bit-representation of 2 n - 1 ? What is bit-representation of 0? Of -1? Study later, but -1 is all 1’s, left-most bit determines < 0 l How can we determine what bits are on? How many on? Useful in solving problems, understanding machine
12
CompSci 100e 10.12 How are data stored? l To facilitate Huffman coding we need to read/write one bit Why do we need to read one bit? Why do we need to write one bit? When do we read 8 bits at a time? Read 32 bits at a time? l We can't actually write one bit-at-a-time. We can't really write one char at a time either. Output and input are buffered,minimize memory accesses and disk accesses Why do we care about this when we talk about data structures and algorithms? Where does data come from?
13
CompSci 100e 10.13 How do we buffer char output? l Done for us as part of InputStream and Reader classes InputStreams are for reading bytes Readers are for reading char values Why do we have both and how do they interact? Reader r = new InputStreamReader(System.in); Do we need to flush our buffers? l In the past Java IO has been notoriously slow Do we care about I? About O? This is changing, and the java.nio classes help Map a file to a region in memory in one operation
14
CompSci 100e 10.14 Buffer bit output l To buffer bit output we need to store bits in a buffer When the buffer is full, we write it. The buffer might overflow, e.g., in process of writing 10 bits to 32-bit capacity buffer that has 29 bits in it How do we access bits, add to buffer, etc.? l We need to use bit operations Mask bits -- access individual bits Shift bits – to the left or to the right Bitwise and/or/negate bits
15
CompSci 100e 10.15 Representing pixels l A pixel typically stores RGB and alpha/transparency values Each RGB is a value in the range 0 to 255 The alpha value is also in range 0 to 255 Pixel red = new Pixel(255,0,0,0); Pixel white = new Pixel(255,255,255,0); l Typically store these values as int values A picture is simply an array of int values void process(int pixel){ int blue = pixel & 0xff; int green = (pixel >> 8) & 0xff; int red = (pixel>> 16) & 0xff; } 255 0 000 00 105 255 0 G 105 0 255 RColorB 0 0 105
16
CompSci 100e 10.16 Bit masks and shifts void process(int pixel){ int blue = pixel & 0xff; int green = (pixel >> 8) & 0xff; int red = (pixel >> 16) & 0xff; } l Hexadecimal number: 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f Note that f is 15, in binary this is 1111, one less than 10000 The hex number 0xff is an 8 bit number, all ones l The bitwise & operator creates an 8 bit value, 0—255 (why) 1&1 == 1, otherwise we get 0, similar to logical and Similarly we have |, bitwise or
17
CompSci 100e 10.17 Bit operations revisited l How do we write out all of the bits of a number / ** * writes the bit representation of a int * to standard out */ void bits(int val) {
18
CompSci 100e 10.18 Problem: finding subsets l See CodeBloat APT, requires finding sums of all subsets Given {72, 33, 41, 57, 25} what is sum closest (not over) 100? How do we do this in general? l Consider three solutions (see also SubsetSums.java) Recursively generate all sums: similar to backtracking Current value part of sum or not, two recursive calls Use technique like sieve to form all sums Why is this so fast? Alternative solution for all sums: use bit patterns to represent subsets What do 10110, 10001, 00111, 00000, and 11111 represent? How do we generate sums from these representations?
19
CompSci 100e 10.19 Text Compression l Input: String S Output: String S Shorter S can be reconstructed from S
20
CompSci 100e 10.20 Huffman Coding l D.A Huffman in early 1950’s l Before compressing data, analyze the input stream l Represent data using variable length codes l Variable length codes though Prefix codes Each letter is assigned a codeword Codeword is for a given letter is produced by traversing the Huffman tree Property: No codeword produced is the prefix of another Letters appearing frequently have short codewords, while those that appear rarely have longer ones l Huffman coding is optimal per-character coding method
21
CompSci 100e 10.21 Text Compression: Examples SymbolASCIIFixed length Var. length a01100001000 b0110001000111 c0110001101001 d01100100011001 e0110010110010 “abcde” in the different formats ASCII: 01100001011000100110001101100100… Fixed: 000001010011100 Var: 000110100110 0 0 0 0 0 0 0 1 11 1 abcde a d bce 0 0 0 01 1 1 1 Encodings ASCII: 8 bits/character Unicode: 16 bits/character
22
CompSci 100e 10.22 Huffman coding: go go gophers l Encoding uses tree: 0 left/1 right How many bits? 37!! Savings? Worth it? ASCII 3 bits Huffman g 103 1100111 000 00 o 111 1101111 001 01 p 112 1110000 010 1100 h 104 1101000 011 1101 e 101 1100101 100 1110 r 114 1110010 101 1111 s 115 1110011 110 101 sp. 32 1000000 111 101 3 s 1 * 2 2 p 1 h 1 2 e 1 r 1 4 g 3 o 3 6 3 2 p 1 h 1 2 e 1 r 1 4 s 1 * 2 7 g 3 o 3 6 13
23
CompSci 100e 10.23 Building a Huffman tree l Begin with a forest of single-node trees (leaves) Each node/tree/leaf is weighted with character count Node stores two values: character and count There are n nodes in forest, n is size of alphabet? l Repeat until there is only one node left: root of tree Remove two minimally weighted trees from forest Create new tree with minimal trees as children, New tree root's weight: sum of children (character ignored) l Does this process terminate? How do we get minimal trees? Remove minimal trees, hummm……
24
CompSci 100e 10.24 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 C 1 F 1 P 2 U 2 R 2 L 2 D 2 G 3 T 3 O 3 B 3 A 4 M 4 S
25
CompSci 100e 10.25 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 C 1 F 1 P 2 U 2 R 2 L 2 D 2 G 3 T 3 O 3 B 3 A 4 M 4 S 2 2
26
CompSci 100e 10.26 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 T 3 O 3 B 3 A 4 M 4 S 2 2 3 3
27
CompSci 100e 10.27 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 T 3 O 3 B 3 A 4 M 4 S 2 2 3 3 4 4
28
CompSci 100e 10.28 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 T 3 O 3 B 3 A 4 M 4 S 2 2 3 3 4 4 4 4
29
CompSci 100e 10.29 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 2 3 3 4 4 4 4 5 5
30
CompSci 100e 10.30 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 4 4 4 4 5 5 6 6
31
CompSci 100e 10.31 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 4 4 4 4 5 5 6 6 6 6
32
CompSci 100e 10.32 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 4 4 4 4 5 5 6 6 6 8 8 6
33
CompSci 100e 10.33 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 E 5 N 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 44 5 5 6 6 6 8 8 6 8 8
34
CompSci 100e 10.34 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 44 5 5 6 6 6 8 8 6 8 8 10
35
CompSci 100e 10.35 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 116 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 6 8 8 6 8 8 10 11
36
CompSci 100e 10.36 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 8 6 8 8 10 11 12
37
CompSci 100e 10.37 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 11 12 16
38
CompSci 100e 10.38 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 1621
39
CompSci 100e 10.39 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 23 162123
40
CompSci 100e 10.40 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 2337
41
CompSci 100e 10.41 Building a tree “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60
42
CompSci 100e 10.42 Huffman Complexities l How do we measure? Size of input file, size of alphabet Which is typically bigger? l Accumulating character counts: ______ How can we do this in O(1) time, though not really l Building the heap/priority queue from counts ____ Initializing heap guaranteed l Building Huffman tree ____ Why? l Create table of encodings from tree ____ Why? l Write tree and compressed file _____
43
CompSci 100e 10.43 Properties of Huffman coding l Want to minimize weighted path length L ( T )of tree T l w i is the weight or count of each codeword i d i is the leaf corresponding to codeword i l How do we calculate character (codeword) frequencies? l Huffman coding creates pretty full bushy trees? When would it produce a “bad” tree? l How do we produce coded compressed data from input efficiently?
44
CompSci 100e 10.44 Writing code out to file l How do we go from characters to encodings? Build Huffman tree Root-to-leaf path generates encoding l Need way of writing bits out to file Platform dependent? Complicated to write bits and read in same ordering l See BitInputStream and BitOutputStream classes Depend on each other, bit ordering preserved l How do we know bits come from compressed file? Store a magic number
45
CompSci 100e 10.45 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 01100000100001001101
46
CompSci 100e 10.46 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 1100000100001001101
47
CompSci 100e 10.47 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 100000100001001101
48
CompSci 100e 10.48 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 00000100001001101
49
CompSci 100e 10.49 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 0000100001001101 G
50
CompSci 100e 10.50 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 000100001001101 G
51
CompSci 100e 10.51 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 00100001001101 G
52
CompSci 100e 10.52 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 0100001001101 G
53
CompSci 100e 10.53 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 100001001101 G
54
CompSci 100e 10.54 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 00001001101 GO
55
CompSci 100e 10.55 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 0001001101 GO
56
CompSci 100e 10.56 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 001001101 GO
57
CompSci 100e 10.57 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 01001101 GO
58
CompSci 100e 10.58 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 1001101 GO
59
CompSci 100e 10.59 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 001101 GOO
60
CompSci 100e 10.60 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 01101 GOO
61
CompSci 100e 10.61 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 1101 GOO
62
CompSci 100e 10.62 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 101 GOO
63
CompSci 100e 10.63 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 0101 GOO
64
CompSci 100e 10.64 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 1 GOOD
65
CompSci 100e 10.65 Decoding a message 11 6 I 5 N 5 E 1 F 1 C 1 P 2 U 2 R 2 L 2 D 2 G 3 O 3 T 3 B 3 A 4 M 4 S 23 445 6 8 6 8 16 10 21 11 12 2337 60 01100000100001001101 GOOD
66
CompSci 100e 10.66 Decoding 1. Read in tree dataO( ) 2. Decode bit string with treeO( )
67
CompSci 100e 10.67 Huffman coding: go go gophers l choose two smallest weights combine nodes + weights Repeat Priority queue? l Encoding uses tree: 0 left/1 right How many bits? ASCII 3 bits Huffman g 103 1100111 000 ?? o 111 1101111 001 ?? p 112 1110000 010 h 104 1101000 011 e 101 1100101 100 r 114 1110010 101 s 115 1110011 110 sp. 32 1000000 111 goers* 33 h 1 2111 2 p 1 h 1 2 e 1 r 1 3 s 1 * 2 2 p 1 h 1 2 e 1 r 1 4 g 3 o 3 6 1 p
68
CompSci 100e 10.68 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
69
CompSci 100e 10.69 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
70
CompSci 100e 10.70 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
71
CompSci 100e 10.71 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
72
CompSci 100e 10.72 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
73
CompSci 100e 10.73 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
74
CompSci 100e 10.74 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
75
CompSci 100e 10.75 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
76
CompSci 100e 10.76 Huffman Tree 2 l “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS” E.g. “ A SIMPLE” “10101101001000101001110011100000”
77
CompSci 100e 10.77 Other methods l Adaptive Huffman coding l Lempel-Ziv algorithms Build the coding table on the fly while reading document Coding table changes dynamically Protocol between encoder and decoder so that everyone is always using the right coding scheme Works well in practice ( compress, gzip, etc.) l More complicated methods Burrows-Wheeler ( bunzip2 ) PPM statistical methods
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.