Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Copernican Revolution The Birth of Modern Science.

Similar presentations


Presentation on theme: "The Copernican Revolution The Birth of Modern Science."— Presentation transcript:

1 The Copernican Revolution The Birth of Modern Science

2 What do we see in the sky? The stars move in the sky but not with respect to each other The planets (or “wanderers”) move differently from stars –They move with respect to the stars –They exhibit strange retrograde motion What does all this mean? How can we explain these movements? What does the universe look like?

3 Timeline Copernicus 1473-1543 Tycho 1546-1601 Kepler 1571-1630 Galileo 1564-1642 Newton 1642-1727

4 Geocentric (Ptolemaic) System The accepted model for 1400 years The earth is at the center The Sun, stars, and planets on their spheres revolve around the earth: explains daily movement To account for unusual planetary motion epicycles were introduced Fit the Greek model of heavenly perfection – spheres are the perfect shape, circular the perfect motion

5 Heliocentric (Copernican) System Sun at center (heliocentric) Uniform, circular motion –No epicycles (almost) Moon orbited the earth, the earth orbited the sun as another planet Planets and stars still on fixed spheres, stars don’t move The daily motion of the stars results from the Earth’s spin The annual motion of the stars results from the Earth’s orbit

6 In the heliocentric model, apparent retrograde motion of the planets is a direct consequence of the Earth’s motion

7 How do we decide between two theories? Use the Scientific method: –These are both explanations based on the observation of retrograde motion –What predictions do the models make? –How can these predictions be tested? Geocentric vs. Heliocentric

8 Phases of Venus Heliocentric predicts that Venus should show a full phase, geocentric does not Unfortunately, the phases of Venus cannot be observed with the naked eye

9 Geocentric vs. Heliocentric Against heliocentric –It predicted planetary motions and events no better than the Geocentric system –The earth does not move (things do not fly off) –The earth is different from the heavens (from Aristotle – the heavens are perfect and unchanging) and cannot be part of the heavens For heliocentric –Simplified retrograde motion, but epicycles were necessary to account for the planets’ changing speed –The distances to the planets could be measured. These distances were ordered, and therefore aesthetically pleasing to the philosophy of the day

10 Stellar Parallax Parallax caused by the motion of the earth orbiting the Sun Not observed with the naked eye The heliocentric model predicts stellar parallax, but Copernicus hypothesizes that the stars are too far away (much farther than the earth from the Sun) for the parallax to be measurable with the naked eye

11 Copernicus vs. the Church Copernicus was not trying to contradict church teachings. As a canon, he believed those teachings He did not wait to publish until he was near death because he was afraid. Rather, he thought the work incomplete. However, other people found a heliocentric universe to be in direct contradiction to statements in the Bible and argued against Copernicus and his system –Martin Luther in one of his "Table Talks" in 1539: People gave ear to an upstart astrologer who strove to show that the earth revolves, not the heavens or the firmament, the sun and the moon....This fool wishes to reverse the entire science of astronomy; but sacred scripture tells us [Joshua 10:13] that Joshua commanded the sun to stand still, and not the earth.

12 Misconceptions 1.The Copernican model has a force between the sun and the planets. Actually, the natural motion of the celestial spheres drove the planetary motions. 2.The Copernican model was simpler than the Ptolemaic one. In fact, though Copernicus eliminated circles to explain retrograde motion, he added more smaller ones to account for non- uniformities of planetary motions. 3.The Copernican model predicted the planetary motions better. Because both models demanded uniform motion around the centers of circles, both worked just about as well – with errors as large as a few degrees at times.

13 Galileo Galilei Turned a telescope toward the heavens Made observations that: –contradicted the perfection of the heavens Mountains, valleys, and craters on the Moon Imperfections on the Sun (sunspots) –Supported the heliocentric universe Moons of Jupiter Phases of Venus – shows a full phase

14 Tycho Brahe Had two sets of astronomical tables: one based on Ptolemy’s theory and one based on Copernicus’. He found that both tables’ predictions were off by days to a month. He believed that much better tables could be constructed just by more accurate observations. Tycho’s homemade instruments improved measurement precision from ten minutes of arc (which had held since Ptolemy) to less than one.

15 Tycho Brahe Tycho’s homemade instruments improved measurement precision from ten minutes of arc (which had held since Ptolemy) to less than one Great Quadrant Armillary Sphere

16 The skies change Tycho observed 2 phenomena that showed the heavens DO change: –In November 1572, Tycho noticed a new star in the constellation Cassiopeia –Comet of 1577 Prior to this sighting, comets were thought to be atmospheric phenomena because of the immutability of the heavens But neither the star nor the comet changed position as the observer moved, as expected for atmospheric phenomena

17 A new star In November 1572, Tycho noticed a new star in the constellation Cassiopeia He collected observations of the nova from all over Europe It did not change position as the point of view changed (as the moon does), so the object must be very far away, as far as the stars themselves This is in direct contradiction with the traditional doctrine that since the heavens are perfect, they must be immutable

18 Comet of 1577 Prior to this sighting, comets were thought to be atmospheric phenomena because of the immutability of the heavens Tycho, among others, made measurements of its changing position Like the nova of 1572, it’s position did not move relative to the observer Over the next two generations the perfection of the heavens was abandoned, as were the crystalline spheres of which they were supposedly composed.

19 Johannes Kepler Kepler succeeded Tycho as the Imperial mathematician (but at only 1/3 the salary of the nobleman) Kepler worked for four years trying to derive the motions of Mars from Brahe’s observations In the process, he discovered that the plane of the earth’s orbit and the plane of Mars’ (and eventually the other planets) passed through the sun Suspecting the sun had a force over the planets, he investigated magnetism While this is not true, it did lead him to the idea of elliptical orbits “With reasoning derived from physical principles agreeing with experience, there is no figure left for the orbit of the planet except a perfect ellipse.”

20 Mathematical perfection The geometrical harmony in the heliocentric system (the distances between the planets) intrigued Kepler. He found that the orbits of the 6 planets could be nested with the 5 known regular “perfect” solids.

21 The battle with Mars Kepler worked for four years trying to derive the motions of Mars from Brahe’s observations In the process, he discovered that the plane of the earth’s orbit and the plane of Mars’ (and eventually the other planets) passed through the sun Suspecting the sun had a force over the planets, he investigated magnetism While this is not true, it did lead him to the idea of elliptical orbits “With reasoning derived from physical principles agreeing with experience, there is no figure left for the orbit of the planet except a perfect ellipse.”

22 Astronomia nova Published in 1609, The New Astronomy was just that, it revolutionized the field It predicted planetary positions as much as ten times better than previous models It included physical causes for the movement of the planets The ideas of the Greeks were gone – the heavens no longer were perfect, immutable, or different from the earth

23 Kepler’s first Law The orbital paths of the planets are elliptical (not circular), with the Sun at one focus.

24 Kepler’s second law An imaginary line connecting the Sun to any planet sweeps out equal areas of the ellipse in equal intervals of time.

25 Kepler’s Third Law The square of a planet’s orbital period is proportional to the cube of its semi-major axis.

26 Other Solar System Bodies Kepler derived his laws for the 6 planets known to him. The laws also apply to the 3 discovered planets and any other body orbiting the Sun (asteroids, comets, etc.)

27 A force for planetary motion Newton proposes a force which controls the motion of the planets – GRAVITY The larger the mass, the larger the force of gravity The further the distance, the smaller the force of gravity Kepler’s third law can be derived from Newton’s law of gravity F = GMm/r 2 = mg

28 Gravity


Download ppt "The Copernican Revolution The Birth of Modern Science."

Similar presentations


Ads by Google