Download presentation
Presentation is loading. Please wait.
1
The Church-Turing Thesis http://cis.k.hosei.ac.jp/~yukita/
2
2 Example M 1
3
3 Definition 3.1
4
4 Configuration 1011q 7 01111 q7q7 101101111___...
5
5 Computation
6
6 Recognizer and Decider
7
7 Example 3.4 M 2
8
8 Example 3.6 M 3
9
9 Example 3.7 [Element distinctness problem] M 4
10
10 Multitape Turing Machines
11
11 Theorem 3.8 Every multitape Turing machine M has an equivalent single tape Turing machine S. S #01010#aaa_... #ba# M 01010_ aaa_ ba_
12
12 Simulation
13
13 Nondeterministic Turing Machines
14
14 Theorem 3.10 Every nondeterministic Turing machine has an equivalent deterministic Turing machine. D 0010__... xx#0 12_ input tape 1x__ 332312113_ simulation tape address tape
15
15 Proof
16
16 Corollary 3.11 A language is Turing recognizable if and only if some nondeterministic Turing machine recognizes it.
17
17 Enumerators
18
18 Theorem 3.13 A language is Turing-recognizable if and only if some enumerator enumerates it.
19
19 To avoid depth-first loops s1s1 s2s2 s3s3 s4s4 s5s5 s6s6
20
20 Hilbert’s 10 th Problem
21
21 Problem 3.18
22
22 Example 3.14 An algorithm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.