Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Introduction to Functional Programming in Racket CS 270 Math Foundations of CS Jeremy Johnson.

Similar presentations


Presentation on theme: "1 Introduction to Functional Programming in Racket CS 270 Math Foundations of CS Jeremy Johnson."— Presentation transcript:

1 1 Introduction to Functional Programming in Racket CS 270 Math Foundations of CS Jeremy Johnson

2 2 Objective To introduce functional programming in racket Programs are functions and their semantics involve function application. Programs may also produce function by returning functions as values. In pure functional programming, this is it, there are no variables, side effects, nor loops. This simplifies semantics but does not reduce computational power. We will investigate the style of programming this implies, and how to model the semantics of such programs.

3 3 Outline 1.Syntax and semantics 2.Functional programming 1.Programs are functions – for every input there is a unique output (referential transparency) 2.No variables  no assignment and no loops 3.Use recursion for control 4.Functions are first class objects 1.Pass as arguments and return as values 5.Simple semantics [value semantics] (no side effects, referential transparency)

4 A Pure Functional Language x 1 = y 1,…,x n =y n  f(x 1,…,x n ) = f(y 1,…,y n ) No side-effects, no assignments, no state, no loops Use recursion instead of iteration Still Turing complete Makes reasoning about programs easier 4

5 C++ Function with Side-Effects #include using namespace std; int cc() { static int x = 0; return ++x; } int main() { cout << "cc() = " << cc() << endl; } 5 % g++ count.c %./a.out cc() = 1 cc() = 2 cc() = 3

6 6 Syntax Programs and data are lists – delimited by ( and ) or [ and ] and separated by space S expressions (E 1 … E n ) Special forms Self evaluating: numbers, Booleans, strings, … (quote expr) (if test-expr then-expr else-expr) (cond ([P1 E1] … [Pt Et])) (lambda (p1 … pn) E1 … Et) (define name E) (let ([b1 v1] … [bt vt] E)

7 7 Semantics To evaluate (E1 E2... En), recursively evaluate E1, E2,...,En - E1 should evaluate to a function - and then apply the function value of E1 to the arguments given by the values of E2,...,En. In the base case, there are self evaluating expressions (e.g. numbers and symbols). In addition, various special forms such as quote and if must be handled separately.

8 8 Read-Eval-Print-Loop (REPL) Dr. Racket IDE

9 Example Evaluation

10 Booleans and Predicates Boolean constants: #t and #f  (= 2 3) => #f  (or (= 2 3) (not (= 2 3))) => #t  (and #t #t #t) => #t Predicates are Boolean functions Convention is name?  (equal? 2 3) => #f  (eq? 2 3) => #f  (number? 2) => #t  (boolean? (and #t #f)) => #t

11 Conditional (if test-expr then-expr else-expr) Evaluate test-expr if not #f evaluate and return then-expr else evaluate and return else-expr  (if ( 0  (if ( 1  (if (= 3 (+ 2 1)) 0 1) => 0  (if (or (= 2 3) (= 3 3)) (+2 3) (+ 3 3)) => 5

12 Conditional (cond [test-expr1 then-body1] [test-exprn then-bodyn] [else then-body]) Evaluate test-expr1 if #f then goto next case otherwise return then-body1. The else case always returns then-body  (cond [(= 2 3) 2] [(= 3 4) 3] [else 4]) => 4

13 List Processing Functions  (null? ‘()) => #t  (null? ‘(1 2 3)) => #f  (car ‘(1 2 3)) => 1  (cdr ‘(1 2 3)) => ‘(2 3)  (cons 1 ‘()) => ‘(1)  (cons 1 ‘(2 3)) => ‘(1 2 3)  (cons 1 (cons 2 (cons 3 '()))) => ‘(1 2 3)  (cons (cons 1 ‘()) ‘(2 3)) => ‘((1) 2 3)

14 Lambda Expressions (lambda (parameters) body) Evaluates to a function When applied the actual arguments are substituted for the formal parameters into the body which is then evaluated and returned  (lambda (x) (* x x)) => #  ((lambda (x) (* x x)) 2) => 4  (define sqr (lambda (x) (* x x)))  (define (sqr x) (* x x))  (sqr 2) => 4

15 Recursion In a functional language there are no side effects, hence no assignment and no loops. All control must be done through recursion  (define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))  (fact 3) => 6  (define (ones n) (if (= n 0) '() (cons 1 (ones (- n 1)))))  (ones 3) => ‘(1 1 1)

16 Tail Recursion A tail recursive function is a function where the recursive call is the last operation. Such procedures can easily be converted to loops.  (define (sum n) (if (zero? n) 0 (+ n (sum (- n 1))))))  (define (sumt n sofar)  (if (zero? n) sofar (sumt (- n 1) (+ n sofar)))))

17 Tail Recursion An equivalent loop can be constructed, which updates the arguments each iteration of the loop. for (;;){ if (n == 0) return sofar; else { t1 = n - 1; t2 = sofar + n; n = t1; sofar = t2; } }

18 18 Higher Order Functions sort :  (sort '(4 3 2 1) (1 2 3 4)  (sort '("one" "two" "three" "four") string '("four" "one" "three" "two") map:  (map sqr '(1 2 3 4)) => ‘(1 4 9 16)

19 19 Higher Order Functions filter:  (filter odd? '(1 2 3 4 5)) => ‘(1 3 5)  (filter even? ‘(1 2 3 4 5)) => ‘(2 4) fold:  (foldr cons '() '(1 2 3 4)) => ‘(1 2 3 4)  (foldr list '() '(1 2 3 4)) => '(1 (2 (3 (4 ()))))  (foldr + 0 '(1 2 3 4)) => 10  (foldl cons ‘() ‘(1 2 3 4)) => ‘(4 3 2 1)  (foldl list '() '(1 2 3 4)) => '(4 (3 (2 (1 ()))))  (foldl * 1 ‘(1 2 3 4)) => 24

20 20 Functions that Return Functions Make-adder  (define (make-adder x) (lambda (y) (+ x y)))  (define add1 (make-adder 1))  (add1 3) => 4  (define (make-multiplier x) (lambda (y) (* x y)))  (define double (make-multiplier 2))  (double 3) => 6

21 21 Function Composition  (define (compose f g) (lambda (x) (f (g x))))  (define add2 (compose add1 add1))  (add2 3) => 5  (define getsecond (compose car cdr))  (getsecond ‘(1 2 3 4 5)) => 2

22 22 Currying  (define (curry f a) (lambda (b) (f a b)))  (define add1 (curry + 1))  (add1 3) => 4  (define double (curry * 2))  (doulble 3) => 6

23 23 Tower of Hanoi  (define (move from to) (list (string-append from to)))  (define (hanoi n from to using) (if (= n 1) (move from to) (append (hanoi (- n 1) from using to) (move from to) (hanoi (- n 1) using to from))))  (hanoi 3 "a" "b" "c") '("ab" "ac" "bc" "ab" "ca" "cb" "ab")


Download ppt "1 Introduction to Functional Programming in Racket CS 270 Math Foundations of CS Jeremy Johnson."

Similar presentations


Ads by Google