Download presentation
Published byDominic Simpson Modified over 8 years ago
1
FET FET’s (Field – Effect Transistors) are much like BJT’s (Bipolar Junction Transistors). Similarities: • Amplifiers • Switching devices • Impedance matching circuits Differences: • FET’s are voltage controlled devices whereas BJT’s are current controlled devices. • FET’s also have a higher input impedance, but BJT’s have higher gains. • FET’s are less sensitive to temperature variations and because of there construction they are more easily integrated on IC’s. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
2
FET Types • JFET ~ Junction Field-Effect Transistor
• MOSFET ~ Metal-Oxide Field-Effect Transistor - D-MOSFET ~ Depletion MOSFET - E-MOSFET ~ Enhancement MOSFET
3
Categories FET METAL-OXIDE semiconductor JUNCTION Depletion Depletion
Enhancement P channel N channel P channel N channel P channel N channel
4
Junction Field Effect Transistor
(JFET)
5
THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)
The JFET is a type of FET that operates with a reverse-biased junction to control current in the channel
6
JFET Symbols
7
JFET Basic Operation - The JFET is always operated with
++ JFET Basic Operation IDS VGS <= 0 - + The JFET is always operated with Drain-to-Source channel of current (เส้นทางการเดินของกระแส) n-channel or p-channel Gate-to-Source pn junction reverse-biased a door to control amount of current flow between Drain-Source VGS (CUT_OFF) <= VGS <= 0
8
How VGS control IDS? การควบคุมกระแส IDS ทำได้โดย |VGS |= 0
การปรับการขยายตัวของ depletion region ระหว่าง Gate กับ channel |VGS |= 0 ให้ค่ากระแส IDS สูงที่สุด ประตูปิดช้า กระแสไหลผ่านได้มาก |VGS | < 0 ให้ค่ากระแส IDS น้อยลง เร่งให้ประตูปิดเร็วขึ้น กระแสไหลได้น้อยลง
9
Relationship between VGS and IDS
IDS(1) = k1 VGS(2) = -a2 IDS(2) = k2 |VGS |: a1 < a2 < a3 IDS: k1 > k2 > k3 VGS(3) = -a3 IDS(3) = k3
10
VGS controls ID. JFET must be operated between VGS =0 and VGS(off)
VGS (off) = VGS (MAX) -> IDS = 0
11
JFET Construction There are two types of JFET’s: n-channel and p-channel. The n-channel is more widely used. There are three terminals: Drain (D) and Source (S) are connected to n-channel Gate (G) is connected to the p-type material Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
12
FIGURE 5-5 Varying reverse-bias potentials across the p-n junction of an n-channel JFET.
Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
13
A. VGS = 0, VDS increasing to some positive value
Three things happen when VGS = 0 and VDS is increased from 0 to a more positive voltage: • the depletion region between p-gate and n-channel increases as electrons from n-channel combine with holes from p-gate. • increasing the depletion region, decreases the size of the n-channel which increases the resistance of the n-channel. • But even though the n-channel resistance is increasing, the current (ID) from Source to Drain through the n-channel is increasing. This is because VDS is increasing. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
14
Pinch-off If VGS = 0 and VDS is further increased to a more positive voltage, then the depletion zone gets so large that it pinches off the n-channel. This suggests that the current in the n-channel (ID) would drop to 0A, but it does just the opposite: as VDS increases, so does ID. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
15
JFET CHARACTERISTICS IDSS is maximum drain current occurring for VGS =0 V, and the value of VDS which ID becomes constant is the pinch-off voltage
16
Comparison of Pinch-Off and Cutoff
Vp is the value of VDS which the drain current becomes constant and is always measured at VGS =0 V VGS(off) and Vp are always equal in magnitude but opposite in sign
17
Transfer Curve From this graph it is easy to determine the value of ID for a given value of VGS. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
18
The transfer characteristic of input-to-output is not as straight forward in a JFET as it was in a BJT. In a BJT, indicated the relationship between IB (input) and IC (output). In a JFET, the relationship of VGS (input) and ID (output) is a little more complicated: Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
19
DC Bias for JFET 2 types of DC bias for JFET Fixed bias Self bias
- 2 sources Self bias - Single source ( 1 source)
20
DC bias for JFET Fixed bias (2 DC sources)
21
Load Line for JFET DC bias Fixed bias (ID, VDS)
RD RG VDD IDS Load Line: VDS vs IDS
22
Load Line for JFET DC bias Fixed bias (ID, VGS)
VGSQ=-2V, IDQ=5.625mA, VDS = 4.75V
23
DC bias for JFET Self bias (Single Source)
RD VDD RG RS IDS VG = 0 Load Line: VDS vs IDS
24
DC bias for JFET Self bias (Single Source)
25
Example for JFET DC bias Self bias (Single Source)
VGSQ=-2.6V, IDQ=2.6mA
26
DC bias for JFET Voltage Divider Bias (Single Source)
27
Load Line for JFET DC bias Voltage Divider bias (ID, VDS)
28
Example for JFET DC bias Voltage Divider bias (Single Source)
29
P-channel JFET p-Channel JFET acts the same as the n-channel JFET, except the polarities and currents are reversed. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
30
P-Channel JFET Characteristics
As VGS increases more positively: • the depletion zone increases • ID decreases (ID < IDSS) • eventually ID = 0A Also note that at high levels of VDS the JFET reaches a breakdown situation. ID increases uncontrollably if VDS > VDSmax. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
31
Specification Sheet (JFETs)
Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
32
MOSFETs MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful. - Low power consumption - No gate current: SiO2 at Gate There are 2 types: • Depletion-Type MOSFET • Enhancement-Type MOSFET Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
33
Depletion MOSFET (D-MOSFET)
34
THE METAL-OXIDE SEMICONDUCTOR FET(MOSFET)
Depletion MOSFET (D-MOSFET) D-MOSFET can be operated either the depletion mode or the enhancement mode
35
D-MOSFET Symbols
36
Main Function of Depletion MOSFET
Control Current flow from Drain-to-Source
37
Two main control mode Depletion mode Enhancement mode
38
Depletion Mode N-channel Vgs -> negative
Electrons from D-to-S channel Push to P-type substrate The more the negative value of Vgs The less amount of current flow from D-to-S
39
Enhancement mode N-channel Vgs -> positive
Electron from p-substrate Pulled into D-to-S channel Increase amount of electrions in the channel
40
Basic Operation (n-channel D-MOSFET)
A Depletion MOSFET can operate in two modes: Depletion or Enhancement mode. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
41
p-Channel Depletion-Type MOSFET
The p-channel Depletion-type MOSFET is similar to the n-channel except that the voltage polarities and current directions are reversed. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
42
Specification Sheet Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
43
คุณลักษณะของ D-MOSFET
Channel การไหลของกระแสแคบกว่า JFET มาก การเปิดปิดประตู (Gate) เพื่อควบคุมปริมาณกระแสให้ไหลตามต้องการได้เร็วกว่า JFET Switching speed On (กระแสไหล) -> Off (กระแสไม่ไหล) หรือ ในทางกลับกัน เร็วกว่า JFET เหมาะกับวงจร Digital ได้ดีกว่า JFET
44
Example for n-channel D-MOSFET DC bias Voltage Divider bias (Single Source)
45
Enhancement MOSFET (E-MOSFET)
46
Enhancement MOSFET(E-MOSFET)
47
N-MOS
48
E-MOSFET symbol D S B G D S B G N-channel P-channel
49
คุณลักษณะของ E-MOSFET
ไม่มี channel ที่แท้จริง (no physical channel) ใช้ virtual channel ที่สร้างขึ้นจาก ใช้ VGS ควบคุม การมีหรือไม่มี virtual channel การดึงดูด carrier ชนิดเดียวกับ channel มาเชื่อมช่องทางเดินกระแส เพื่อให้กระแส IDS เป็นตามต้องการ Switching speed ความเร็วในการให้กระแสไหล หรือ หยุดไหล เร็วมากกว่า JFET และ D-MOSFET หยุดป้อน VGS virtual channel หายไปเกือบจะทันที นิยมใช้ใน Combinational Logic, CPU, Memory โดยเฉพาะ CMOS ซึ่งเป็น E-MOSFET ชนิดหนึ่ง
50
How to induce the Channel D-to-S
51
source-drain current below saturation
Semiconductor Devices, 2/E by S. M. Sze, Copyright © 2002 John Wiley & Sons. Inc. All rights reserved.
52
source-drain current for pinch-off
Semiconductor Devices, 2/E by S. M. Sze, Copyright © 2002 John Wiley & Sons. Inc. All rights reserved.
53
source-drain current in saturation
Semiconductor Devices, 2/E by S. M. Sze, Copyright © 2002 John Wiley & Sons. Inc. All rights reserved.
54
Transfer Curve To determine ID given VGS: [Formula 5.13]
where VT = threshold voltage or voltage at which the MOSFET turns on. k = constant found in the specification sheet k can also be determined by using values at a specific point and the formula: [Formula 5.14] VDSsat can also be calculated: [Formula 5.12] Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
55
Load Line for n-channel E-MOSFET DC bias Voltage Divider bias (Single Source)
VDD = 40V, R1=22MOhm, R2=18MOhm, RD=3kOhm, Rs=0.82kOhm E-MOSFET (2N4351): VGS(Th)=VT=5V, ID(on)=3mA, VGS(on)=10V VGSQ=12.5V, IDQ=6.7mA
56
Load Line for n-channel E-MOSFET DC bias Feedback bias (Single Source)
57
Example for n-channel E-MOSFET DC bias Feedback bias (Single Source)
58
Specification Sheet Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
59
VMOS VMOS – Vertical MOSFET increases the surface area of the device.
Advantage: • This allows the device to handle higher currents by providing it more surface area to dissipate the heat. • VMOSs also have faster switching times. Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
60
CMOS CMOS – Complementary MOSFET p-channel and n-channel MOSFET on the same substrate. Advantage: • Useful in logic circuit designs • Higher input impedance • Faster switching speeds • Lower operating power levels Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
61
CMOS N-MOS P-MOS
62
From device to system Figure 1.5 SYSTEM MODULE + GATE CIRCUIT DEVICE G
n+ n+ Figure 1.5
63
Application of CMOS Microprocessor
64
Transistor Counts 1 Billion Transistors K 1,000,000 100,000 10,000
Pentium® III 10,000 Pentium® II Pentium® Pro 1,000 Pentium® i486 i386 100 80286 10 8086 Source: Intel 1 1975 1980 1985 1990 1995 2000 2005 2010 Projected Figure 1.1 Courtesy, Intel
65
Application of CMOS 1970: Fairchild introduces 256-bit Static RAMs
1970: Intel starts selling1K-bit Dynamic RAMs Intel K-bit DRAM Fairchild bit SRAM
66
Memory trends Figure 1.2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.