Download presentation
Presentation is loading. Please wait.
1
Congruent Triangles Part 2
Unit 4 SOL G.5 & G.6 Sections 4.5, 4.6, 4.7 Review & Proofs Resource: Henrico Geometry
2
Parts of An Isosceles Triangle
An isosceles triangle is a triangle with at least two congruent sides. The congruent sides are called legs and the third side is called the base. The angles adjacent to the base are called base angles. The angle opposite the base is called the vertex angle. and are legs. is the base. 1 and 2 are base angles. 3 is the vertex angle.
3
Isosceles Triangle Theorems
If two sides of a triangle are congruent, then the angles opposite those sides are congruent.
4
Example By the Isosceles Triangle Theorem,
the third angle must also be x. Therefore, x + x + 50 = 180 2x + 50 = 180 2x = 130 x = 65 x
5
More Examples Since two angles are congruent, the
sides opposite these angles must be congruent. 3x – 7 = x + 15 2x = 22 x = 11
6
Equilateral and Equiangular Triangles
Corollary: If a triangle is equilateral, then … it is equiangular. .
7
What if all the ANGLES in a triangle are DIFFERENT?
Then the triangle is SCALENE because all of the sides are DIFFERENT too!
8
The triangles are congruent by HL.
Hypotenuse-Leg (HL) If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent. Right Triangle Leg Hypotenuse AB HL CB GL C and G are rt. ‘s ABC DEF The triangles are congruent by HL.
9
Reflexive Sides and Angles
Vertical Angles, Reflexive Sides and Angles When two triangles touch, there may be additional congruent parts. Vertical Angles Reflexive Side side shared by two triangles
10
Name That Postulate SAS SAS SSA AAS Vertical Angles Reflexive Property
(when possible) Vertical Angles Reflexive Property SAS SAS Vertical Angles Reflexive Property SSA AAS Not enough info!
11
Reflexive Sides and Angles
When two triangles overlap, there may be additional congruent parts. Reflexive Side side shared by two triangles Reflexive Angle angle shared by two
12
Let’s Practice B D AC FE A F
Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: B D For SAS: AC FE A F For AAS:
13
Problem #1
14
Step 1: Mark the Given
15
Step 3: Choose a Method SSS SAS ASA AAS HL
16
Step 4: List the Parts S S S … in the order of the Method STATEMENTS
REASONS S S S … in the order of the Method
17
Step 5: Fill in the Reasons
STATEMENTS REASONS S S S (Why did you mark those parts?)
18
Step 6: Is there more? S S S The “Prove” Statement is always last !
STATEMENTS REASONS S S S
19
Problem #2
20
Step 1: Mark the Given
21
Step 3: Choose a Method SSS SAS ASA AAS HL
22
Step 4: List the Parts S A S … in the order of the Method STATEMENTS
REASONS S A S … in the order of the Method
23
Step 5: Fill in the Reasons
STATEMENTS REASONS S A S (Why did you mark those parts?)
24
Step 6: Is there more? S A S The “Prove” Statement is always last !
STATEMENTS REASONS S A S
25
Problem #3
26
Step 1: Mark the Given
27
Step 3: Choose a Method SSS SAS ASA AAS HL
28
Step 4: List the Parts A S A … in the order of the Method STATEMENTS
REASONS A S A … in the order of the Method
29
Step 6: Is there more? A S A The “Prove” Statement is always last !
STATEMENTS REASONS A S A
30
Problem #4 AAS Statements Reasons Given Given AAS Postulate
Vertical Angles Thm Given AAS Postulate
31
Problem #5 HL Statements Reasons Given Given Reflexive Property
Given ABC, ADC right s, Prove: Statements Reasons Given 1. ABC, ADC right s Given Reflexive Property HL Postulate
32
Congruence Proofs 1. Mark the Given. 2. Mark …
Reflexive Sides or Angles / Vertical Angles Also: mark info implied by given info. 3. Choose a Method. (SSS , SAS, ASA) 4. List the Parts … in the order of the method. 5. Fill in the Reasons … why you marked the parts. 6. Is there more?
33
Given implies Congruent Parts
segments midpoint angles parallel segments segment bisector angles angle bisector angles perpendicular
34
Example Problem
35
… and what it implies Step 1: Mark the Given
36
Reflexive Sides Vertical Angles Step 2: Mark . . . … if they exist.
37
Step 3: Choose a Method SSS SAS ASA AAS HL
38
Step 4: List the Parts S A … in the order of the Method STATEMENTS
REASONS S A … in the order of the Method
39
Step 5: Fill in the Reasons
STATEMENTS REASONS S A S (Why did you mark those parts?)
40
Step 6: Is there more? STATEMENTS REASONS S 1. 2. 3. 4. 5. A S
41
Midpoint implies segments.
Back Midpoint implies segments. STATEMENTS REASONS S … 3. 3. Given
42
Parallel implies angles.
Back Parallel implies angles. STATEMENTS REASONS A A
43
Seg. bisector implies segments.
Back Seg. bisector implies segments. STATEMENTS REASONS S … S
44
Angle bisector implies angles.
Back Angle bisector implies angles. STATEMENTS REASONS A …
45
implies right ( ) angles.
Back STATEMENTS REASONS A … S 4. 4. Given
46
Congruent Triangles Proofs
1. Mark the Given and what it implies. 2. Mark … Reflexive Sides / Vertical Angles 3. Choose a Method. (SSS , SAS, ASA) 4. List the Parts … in the order of the method. 5. Fill in the Reasons … why you marked the parts. 6. Is there more?
47
Using CPCTC in Proofs According to the definition of congruence, if two triangles are congruent, their corresponding parts (sides and angles) are also congruent. This means that two sides or angles that are not marked as congruent can be proven to be congruent if they are part of two congruent triangles. This reasoning, when used to prove congruence, is abbreviated CPCTC, which stands for Corresponding Parts of Congruent Triangles are Congruent.
48
Corresponding Parts of Congruent Triangles
For example, can you prove that sides AD and BC are congruent in the figure at right? The sides will be congruent if triangle ADM is congruent to triangle BCM. Angles A and B are congruent because they are marked. Sides MA and MB are congruent because they are marked. Angles 1 and 2 are congruent because they are vertical angles. So triangle ADM is congruent to triangle BCM by ASA. This means sides AD and BC are congruent by CPCTC.
49
Corresponding Parts of Congruent Triangles
A two column proof that sides AD and BC are congruent in the figure at right is shown below: Statement Reason MB Given ÐB Ð2 Vertical angles DBCM ASA BC CPCTC
50
Corresponding Parts of Congruent Triangles
A two column proof that sides AD and BC are congruent in the figure at right is shown below: Statement Reason MB Given ÐB Ð2 Vertical angles DBCM ASA BC CPCTC
51
Corresponding Parts of Congruent Triangles
Sometimes it is necessary to add an auxiliary line in order to complete a proof For example, to prove ÐO in this picture Statement Reason FO Given OU UF reflexive prop. DFOU SSS ÐO CPCTC
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.