Download presentation
Presentation is loading. Please wait.
Published byAbel Hoover Modified over 8 years ago
1
EESFYE, Patras April 14-16/2011 Fancy Neutrino Oscillometry-on Settling the Reactor Neutrino Anomaly) (LOW ENERGY NEUTRINOS IN A BO X) J.D. Vergados*, Y. Giomataris* and Yu.N. Novikov *for the NOSTOS Collaboration: Saclay, APC-Paris, Saragoza, Ioannina, Thessaloniki, Dimokritos, Dortmund, Sheffield
2
EESFYE, Patras April 14-16/2011 NOSTOS: SPHERICAL TPC’s (STPC) for detecting Earth or sky neutrinos A) LOW ENERGY NEUTRINOS IN A SPHERICAL BOX A) LOW ENERGY NEUTRINOS IN A SPHERICAL BOX ( electron recoils from low energy neutrinos) ( electron recoils from low energy neutrinos) B) Neutral Current Spherical TPC’s B) Neutral Current Spherical TPC’s (nuclear recoils) (nuclear recoils) B1: For Dedicated SUPERNOVA NEUTRINO DETECTION B1: For Dedicated SUPERNOVA NEUTRINO DETECTION B2: For exotic neutrino Oscillometry (Reactor Neutrino B2: For exotic neutrino Oscillometry (Reactor Neutrino Anomaly) Anomaly)
3
EESFYE, Patras April 14-16/2011 NEUTRINO OSCILLATIONS Neutrino mass terms 1. Dirac +(heavy neutrino) Majorana type or 2. Light neutrino Majorana type Result in all cases: Neutrino mixing
4
EESFYE, Patras April 14-16/2011 Standard Parameterization of Mixing Matrix (2 Majorana phases not shown)
5
The mixing matrix is called PNMS (Pontecorvo–Maki–Nakagawa–Sakata matrix). It has not yet been derived from a basic theory. From neutrino oscillations we know that, unlike the C-M matrix for quarks, it has large off diagonal elements. Some models yield “bi-tri maximal” form consistent with ν-oscillations, i.e. Pontecorvo–Maki–Nakagawa–Sakata matrixPontecorvo–Maki–Nakagawa–Sakata matrix EESFYE, Patras April 14-16/2011
6
Massive Neutrinos Oscillate! Flavor states: ν α, α=e,μ,τ. Flavor states: ν α, α=e,μ,τ. Mass eigenstates: : ν i, i=1,2,3 Mass eigenstates: : ν i, i=1,2,3 Flavor α at time t=0, ν α =Σ ι U αj ν j Flavor α at time t=0, ν α =Σ ι U αj ν j Flavor α at a later time t#0, ν α =Σ ι U αj ν j exp(iE j t) Flavor α at a later time t#0, ν α =Σ ι U αj ν j exp(iE j t) P(ν α ->ν β ) =Σ j (U βj )* U αj exp(iE j t ) #δ αβ P(ν α ->ν β ) =Σ j (U βj )* U αj exp(iE j t ) #δ αβ
7
Neutrino Oscillations (two ν types) L=ct, L 0 =oscillation length period Mixing matrix Mixing matrix Q.M. Evolution Equation Q.M. Evolution Equation EESFYE, Patras April 14-16/2011
8
Neutrino Oscillation Experiments Effectively analyzed as two generations Appearance Appearance P(ν α -> ν β, α≠β)=sin 2 2θ sin 2 π(L/L 0 ) P(ν α -> ν β, α≠β)=sin 2 2θ sin 2 π(L/L 0 ) Disappearance Disappearance P(ν α -> ν α )=1-sin 2 2θ sin 2 π(L/L 0 ) P(ν α -> ν α )=1-sin 2 2θ sin 2 π(L/L 0 ) θ the effective mixing angle θ the effective mixing angle L 0 the oscillation Length =(4πE ν )/Δm 2 or L 0 the oscillation Length =(4πE ν )/Δm 2 or L 0 =2.476km {E ν /1MeV}/{Δm 2 /10 -3 eV 2 }= L 0 =2.476km {E ν /1MeV}/{Δm 2 /10 -3 eV 2 }= 2.476m {E ν /1keV}/{Δm 2 /10 -3 eV 2 } 2.476m {E ν /1keV}/{Δm 2 /10 -3 eV 2 } L is the source detector distance L is the source detector distance
9
Two generation Oscillations θ=π/4 (atmospheric), θ=π/5 (solar) EESFYE, Patras April 14-16/2011
10
Table I: Best fit values from global data (solar, atmospheric, reactor (KamLand and CHOOZE) and K2K experiments)
11
EESFYE, Patras April 14-16/2011 In (ν e,e) detector all flavors contribute σ e (Ε ν,L)= σ(Ε ν,0) P(Ε ν,ν e -->ν e ) σ e (Ε ν,0) is the standard electron neutrino cross section in the absence of oscillation. σ e (Ε ν,0) is the standard electron neutrino cross section in the absence of oscillation. The 3-generation oscillation probability (after integration over the electron energies ) will appear as: The 3-generation oscillation probability (after integration over the electron energies ) will appear as: P(ν e ->ν e )≈1- χ(Ε ν ) P(ν e ->ν e )≈1- χ(Ε ν ) {sin 2 (2θ 12 ) sin 2 [π(L\L 12 )]+ {sin 2 (2θ 12 ) sin 2 [π(L\L 12 )]+ sin 2 (2θ 13 ) sin 2 [π(L\L 13 )]}, L 13 = L 23 sin 2 (2θ 13 ) sin 2 [π(L\L 13 )]}, L 13 = L 23
12
The ν e disappearance probability E ν =13keV, θ 12 =π/5, sin 2 2θ 13 =0.175,0.085,0.045 Detector close to the source Detector far from the source EESFYE, Patras April 14-16/2011
13
More Exotic Neutrino Oscillation Experiments to extract more precise Neutrino Oscillation Parameters Very low energy neutrinos small oscillation lengths The full oscillation takes place inside the detector (many standard experiments simultaneously) Due to thresholds available are only: neutrino electron and neutral current scattering are open EESFYE, Patras April 14-16/2011
14
The NOSTOS Set Up (the position is determined via a radial Electric field) The detector The neutrino source EESFYE, Patras April 14-16/2011
15
The famous “sphere” EESFYE, Patras April 14-16/2011
16
The number of events for a spherical gaseous detector (source at the origin) EESFYE, Patras April 14-16/2011
17
Part I (ν e, e) scattering For measuring For measuring EESFYE, Patras April 14-16/2011 sin 2 (2θ 13 ) and δm 2 13
18
Some sources of low energy Monoenergetic Neutrinos for mesuring sin 2 (2θ 13 ) and δm 2 13 EESFYE, Patras April 14-16/2011
19
Event rate dN/dL(per m), P=10Atm, Ar target for m=0.2 and 0.3 kg of source sin 2 2θ 13 =0.175,0.085,0.045 T th =0.1keV L=10m, E ν =9.8 keV ( 157 Tb) L=50m, E ν =50 keV ( 193 Pt) Neutrino20010 Athens 19/06/10 L->m
20
Part II: (ν e, e) scattering for oscillations to a Sterile Neutrino measuring* sin 2 (2θ 14 ) and δm 2 14 Motivated by The reactor neutrino anomaly and LSND: sin 2 (2θ 14 ) =0.17±0.1(95%), δm 2 14 >1.5 eV 2 Motivated by The reactor neutrino anomaly and LSND: sin 2 (2θ 14 ) =0.17±0.1(95%), δm 2 14 >1.5 eV 2 *Now δm 2 is larger ->The optimal ν-energy can be larger *Now δm 2 is larger ->The optimal ν-energy can be larger EESFYE, Patras April 14-16/2011
21
Sterile neutrinos in (ν e,e) detector σ tot (Ε ν,L)= σ(Ε ν,0) P(Ε ν ;ν e -->ν e )
22
Some sources (0.1 kg) of low energy Monoenergetic Neutrinos for meαsuring sin 2 (2θ 14 ) and δm 2 14 (electron recoils) To check the Reactor neutrino anomaly sin 2 (2θ 14 )= 0.17± 0.01, δm 2 14 ≈1.5 eV 2 EESFYE, Patras April 14-16/2011
23
Sterile neutrino oscillations: R 0 =4m,P=10 Atm Ε ν =747 keV; full, dotted, dashed curve sin 2 (2θ 14 )=0.27,0.17,0.07 Oscillation Pattern (10d) Expected Spectra (55d) EESFYE, Patras April 14-16/2011
24
Determination of θ 14 by 40 Ar (ν e,e) detector: sin 2 (2θ 14 )=0.05 (99%) The total number of events: The total number of events: N 0 =A+B sin 2 (2θ 14 ) N 0 =A+B sin 2 (2θ 14 ) For 51 Cr (measuring for 55 days): For 51 Cr (measuring for 55 days): A=1.59x10 4, B=-7.56x10 4 A=1.59x10 4, B=-7.56x10 4 EESFYE, Patras April 14-16/2011
25
Part III: Neutral Current detectors* for oscillations to a Sterile Neutrino measuring sin 2 (2θ 14 ) and δm 2 14 Motivated by The reactor neutrino anomaly and LSND: sin 2 (2θ 14 ) =0.17±0.1(95%), δm 2 14 >1.5 eV 2 Now δm 2 is larger ->The optimal ν-energy can be larger Motivated by The reactor neutrino anomaly and LSND: sin 2 (2θ 14 ) =0.17±0.1(95%), δm 2 14 >1.5 eV 2 Now δm 2 is larger ->The optimal ν-energy can be larger *Expect large cross sections due to the N 2 dependence instead of Z for (ν e, e) *Expect large cross sections due to the N 2 dependence instead of Z for (ν e, e) EESFYE, Patras April 14-16/2011
26
Neutrino oscillations with NC interactions? EESFYE, Patras April 14-16/2011
27
Some sources (0.1 kg) of low energy Monoenergetic Neutrinos for meαsuring sin 2 (2θ 14 ) and δm 2 14 (nuclear recoils) To check the Reactor neutrino anomaly sin 2 (2θ 14 )= 0.17± 0.01, δm 2 14 ≈1.5 eV 2 EESFYE, Patras April 14-16/2011
28
Unexpected snug: Threshold effect kills the benefit of large N 2 (large σ) Large mass Small recoil energy EESFYE, Patras April 14-16/2011
29
Sterile neutrino oscillations: R 0 =4m,P=10 Atm Ε ν =1343 keV; (NC) full, dotted, dashed curve sin 2 (2θ 14 )=0.27,0.17,0.07 Oscillation Pattern Expected Spectra EESFYE, Patras April 14-16/2011
30
Sterile neutrino oscillations: R 0 =4m,P=10 Atm Ε ν =1343 keV; (NC) full, dotted, dashed curve sin 2 (2θ 14 )=0.27,0.17,0.07 source: 65 Zn; target 20 Ne source: 65 Zn; target 20 Ne source: 65 Zn; target 4 He source: 65 Zn; target 4 He EESFYE, Patras April 14-16/2011
31
Sterile neutrino oscillations: R 0 =4m,P=10 Atm Antineutrino (continuous) source ; (NC) NC cross section (no oscillation) NC cross section (no oscillation) Source spectrum EESFYE, Patras April 14-16/2011
32
Sterile neutrino oscillations: R 0 =4m,P=10 Atm Antineutrino (continuous) source ; (NC) full, dotted, dashed curve sin 2 (2θ 14 )=0.27,0.17,0.07 source: 32 P; target 40 Ar source: 32 P; target 40 Ar source: 32 P; target 20 Ne source: 32 P; target 20 Ne EESFYE, Patras April 14-16/2011
33
Determination of θ 14 by NC 20 Ne detector: sin 2 (2θ 14 )=0.1 (99%) The total number of events: The total number of events: N 0 =A+B sin 2 (2θ 14 ) N 0 =A+B sin 2 (2θ 14 ) For 65 Zn (measuring for 50 days): For 65 Zn (measuring for 50 days): A=5.3 x10 2, B=-2.8x10 2 A=5.3 x10 2, B=-2.8x10 2 EESFYE, Patras April 14-16/2011
34
Conclusions A (neutrino oscillations): The discovery of neutrino oscillations gave neutrino physics and astrophysics a new momentum. The discovery of neutrino oscillations gave neutrino physics and astrophysics a new momentum. The two mass square differences, except for a sign, are known The two mass square differences, except for a sign, are known The mixing angles θ 12 and θ 23 are understood. The mixing angles θ 12 and θ 23 are understood. The angle θ 13 and the phase δ 13 are unknown. The angle θ 13 and the phase δ 13 are unknown. Neutrino Oscillations like double CHOOZE and NOSTOS may help in determining the neutrino oscillation parameters, including θ 13, more precisely. Neutrino Oscillations like double CHOOZE and NOSTOS may help in determining the neutrino oscillation parameters, including θ 13, more precisely. The Reactor Neutrino Anomaly implies a fourth (sterile?) neutrino. Neutrino oscillometry with the gaseous STPC detector (nostos) is ideally suited to resolve this issue The Reactor Neutrino Anomaly implies a fourth (sterile?) neutrino. Neutrino oscillometry with the gaseous STPC detector (nostos) is ideally suited to resolve this issue
35
Questions that cannot be answered by neutrino oscillations: The mass scale and the sign of Δm 2 31 (normal vs inverted hierarchy or almost degenerate scenario) EESFYE, Patras April 14-16/2011
36
Conclusions B (involving neutrinos) The absolute scale of neutrino mass is still elusive. The combination neutrinoless double beta decay, triton decay, astrophysics may provide the answer We do not know whether the neutrinos are Dirac or Majorana type particles (only neutrinoless double beta decay can settle this issue) We do not know whether the neutrinos are Dirac or Majorana type particles (only neutrinoless double beta decay can settle this issue) Neutrinos may be the best probes for studying the deep sky and the interior of dense objects, like supernovae. A network of cheap easily maintainable and robust STPC detectors maybe a useful in supernova neutrino detection. Neutrinos may be the best probes for studying the deep sky and the interior of dense objects, like supernovae. A network of cheap easily maintainable and robust STPC detectors maybe a useful in supernova neutrino detection. Shall we ever see the neutrino background radiation? Will we see it before the gravitational background radiation? Shall we ever see the neutrino background radiation? Will we see it before the gravitational background radiation? EESFYE, Patras April 14-16/2011
37
THE END THE END EESFYE, Patras April 14-16/2011
38
The standard (ν,e) cross section ( In the absence of neutrino oscillations) EESFYE, Patras April 14-16/2011
39
II: Measure the Weinberg angle at very low momentum transfers
40
EESFYE, Patras April 14-16/2011 III : At low neutrino energies: The EM interaction competes with the weak With μ ν the neutrino magnetic moment and ξ 1 ≈0.25 With μ ν the neutrino magnetic moment and ξ 1 ≈0.25 Thus we can obtain the limit: μ ν ≤10 -12 μ Β Thus we can obtain the limit: μ ν ≤10 -12 μ Β (present limit: μ ν ≤10 -10 μ Β ) (present limit: μ ν ≤10 -10 μ Β )
41
EESFYE, Patras April 14-16/2011 Simulations: sin 2 (2θ 13 )=0.170 (left), sin 2 (2θ 13 )=0.085 (right)
42
Current Limits EESFYE, Patras April 14-16/2011
43
Neutrino mass terms- Dirac mass term M D
44
EESFYE, Patras April 14-16/2011 Neutrino mass terms- Majorana mass terms M ν & M Ν
45
EESFYE, Patras April 14-16/2011 Generic Models of neutrino mass – See-saw
46
EESFYE, Patras April 14-16/2011 Majorana neutrino mass
47
EESFYE, Patras April 14-16/2011 The Mass Hierarchies - Flavor Content
48
EESFYE, Patras April 14-16/2011 (1):Astrophysics Mass Limit Σ k m k = m astro =0.71eV (1):Astrophysics Mass Limit Σ k m k = m astro =0.71eV
49
EESFYE, Patras April 14-16/2011 Astrophysics bound: 0.71 eV, Log(0.71)=-0.15 black Σm k, green m 3 green m 1 dotted m 1, red m 2 dotted m 3, red m 2
50
EESFYE, Patras April 14-16/2011 (2): Triton decay mass limit m decay =2.2eV (2): Triton decay mass limit m decay =2.2eV
51
EESFYE, Patras April 14-16/2011 Triton decay limit: m decay =2.2eV, Log(2.2)=0.34 KATRIN 0.2 eV, Log(0.2)=-0.7; Black m decay (m 1 ), green m 3 m 1 ≈ m 2 ≈ m decay dotted m 1, red m 2 dotted m 3,
52
EESFYE, Patras April 14-16/2011 Majorana Mass Mechanism (ν) c =e iφ ν, φ=α κ (Majorana condition)
53
EESFYE, Patras April 14-16/2011 Effective neutrino mass encountered in 0ν ββ-decay [α=α 2 -α 1, β=α 3 -α 1 +2δ 13, α1, α 2, α 3 Majorana phases] Mass scale: m 1 (normal); m 3 (inverted)
54
lower m ee bound from 0ν ββ-decay (From J Valle) Normal hierarchy Inverted lower m ee bound from 0ν ββ-decay (From J Valle) Normal hierarchy Inverted EESFYE, Patras April 14-16/2011
55
The (ν,e) scattering cross section EESFYE, Patras April 14-16/2011
56
Minimal set of Neutrino Parameters EESFYE, Patras April 14-16/2011
57
CAST:Another “Greek” Collaboration Probing eV-scale axions with CAST Probing eV-scale axions with CAST Probing eV-scale axions with CAST Probing eV-scale axions with CAST E. Arik, S. Aune, D. Autiero, K. Barth, A. Belov, B. Beltrán, S. Borghi, G. Bourlis, F.S. Boydag, H. Bräuninger, J.M. Carmona, S. Cebrián, S.A. Cetin, J.I. Collar, T. Dafni, M. Davenport, L. Di Lella, O.B. Dogan, C. Eleftheriadis, N. Elias, G. Fanourakis, E. Ferrer-Ribas, H. Fischer, P. Friedrich, J. Franz, J. Galán, T. Geralis, I. Giomataris, S. Gninenko, H. Gómez, R. Hartmann, M. Hasinoff, F.H. Heinsius, I. Hikmet, D.H.H. Hoffmann, I.G. Irastorza, J. Jacoby, K. Jakovčić, D. Kang, K. Königsmann, R. Kotthaus, M. Krčmar, K. Kousouris, M. Kuster, B. Lakić, C. Lasseur, A. Liolios, A. Ljubičić, G. Lutz, G. Luzón, D. Miller, J. Morales, T. Niinikoski, A. Nordt, A. Ortiz, T. Papaevangelou, M.J. Pivovaroff, A. Placci, G. Raffelt, H. Riege, A. Rodríguez, J. Ruz, I. Savvidis, Y. Semertzidis, P. Serpico, R. Soufli, L. Stewart, K. van Bibber, J. Villar, J. Vogel, L. Walckiers and K. Zioutas E. Arik, S. Aune, D. Autiero, K. Barth, A. Belov, B. Beltrán, S. Borghi, G. Bourlis, F.S. Boydag, H. Bräuninger, J.M. Carmona, S. Cebrián, S.A. Cetin, J.I. Collar, T. Dafni, M. Davenport, L. Di Lella, O.B. Dogan, C. Eleftheriadis, N. Elias, G. Fanourakis, E. Ferrer-Ribas, H. Fischer, P. Friedrich, J. Franz, J. Galán, T. Geralis, I. Giomataris, S. Gninenko, H. Gómez, R. Hartmann, M. Hasinoff, F.H. Heinsius, I. Hikmet, D.H.H. Hoffmann, I.G. Irastorza, J. Jacoby, K. Jakovčić, D. Kang, K. Königsmann, R. Kotthaus, M. Krčmar, K. Kousouris, M. Kuster, B. Lakić, C. Lasseur, A. Liolios, A. Ljubičić, G. Lutz, G. Luzón, D. Miller, J. Morales, T. Niinikoski, A. Nordt, A. Ortiz, T. Papaevangelou, M.J. Pivovaroff, A. Placci, G. Raffelt, H. Riege, A. Rodríguez, J. Ruz, I. Savvidis, Y. Semertzidis, P. Serpico, R. Soufli, L. Stewart, K. van Bibber, J. Villar, J. Vogel, L. Walckiers and K. Zioutas E. Arik S. Aune D. Autiero K. Barth A. Belov B. Beltrán S. Borghi G. Bourlis F.S. Boydag H. Bräuninger J.M. Carmona S. Cebrián S.A. CetinJ.I. Collar T. Dafni M. Davenport L. Di Lella O.B. Dogan C. Eleftheriadis N. Elias G. Fanourakis E. Ferrer-Ribas H. Fischer P. Friedrich J. Franz J. Galán T. Geralis I. Giomataris S. Gninenko H. Gómez R. Hartmann M. Hasinoff F.H. Heinsius I. Hikmet D.H.H. Hoffmann I.G. Irastorza J. Jacoby K. Jakovčić D. Kang K. KönigsmannR. Kotthaus M. Krčmar K. Kousouris M. Kuster B. Lakić C. Lasseur A. Liolios A. Ljubičić G. Lutz G. Luzón D. Miller J. Morales T. Niinikoski A. Nordt A. Ortiz T. Papaevangelou M.J. Pivovaroff A. PlacciG. Raffelt H. Riege A. Rodríguez J. Ruz I. Savvidis Y. Semertzidis P. Serpico R. Soufli L. Stewart K. van Bibber J. Villar J. Vogel L. Walckiers K. Zioutas E. Arik S. Aune D. Autiero K. Barth A. Belov B. Beltrán S. Borghi G. Bourlis F.S. Boydag H. Bräuninger J.M. Carmona S. Cebrián S.A. CetinJ.I. Collar T. Dafni M. Davenport L. Di Lella O.B. Dogan C. Eleftheriadis N. Elias G. Fanourakis E. Ferrer-Ribas H. Fischer P. Friedrich J. Franz J. Galán T. Geralis I. Giomataris S. Gninenko H. Gómez R. Hartmann M. Hasinoff F.H. Heinsius I. Hikmet D.H.H. Hoffmann I.G. Irastorza J. Jacoby K. Jakovčić D. Kang K. KönigsmannR. Kotthaus M. Krčmar K. Kousouris M. Kuster B. Lakić C. Lasseur A. Liolios A. Ljubičić G. Lutz G. Luzón D. Miller J. Morales T. Niinikoski A. Nordt A. Ortiz T. Papaevangelou M.J. Pivovaroff A. PlacciG. Raffelt H. Riege A. Rodríguez J. Ruz I. Savvidis Y. Semertzidis P. Serpico R. Soufli L. Stewart K. van Bibber J. Villar J. Vogel L. Walckiers K. Zioutas JCAP02(2009)008 doi: 10.1088/1475-7516/2009/02/008 JCAP02(2009)008 doi: 10.1088/1475-7516/2009/02/00810.1088/1475-7516/2009/02/008 EESFYE, Patras April 14-16/2011
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.