Download presentation
Presentation is loading. Please wait.
Published byEugene McLaughlin Modified over 8 years ago
2
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 1/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Automated Detection of Transition Segments for Intensity and Time-Scale Modification for Speech Intelligibility Enhancement by A. R. Jayan, P. C. Pandey, P. K. Lehana EE Dept, IIT Bombay 5 th January, 2008
3
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 2/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. PAPER OUTLINE 1. Introduction 2. Acoustic Properties of Clear Speech 3.Automated Detection of Transition Segments 4.Intensity and Time-Scale Modification 5.Experimental Results 6.Summary and Conclusion
4
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 3/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. INTRODUCTION Speech landmarks Regions in speech containing important information for speech perception Associated with spectral transitions Most of the landmarks coincide with phoneme boundaries Landmarks types 1. Abrupt-consonantal (AC) – Tight constrictions of primary articulators 2. Abrupt (A) - Fast glottal or velum activity 3. Non-abrupt (N) - Semi-vowel landmarks, less vocal tract constriction 4. Vocalic (V) - Vowel landmarks, oral cavity maximally open, maximum energy, F1 Abrupt (~68%) Vocalic (~29%) Non-abrupt (~3%) Intro. 1/2
5
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 4/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Objective To improve speech intelligibility in quiet and noisy environments Automated detection of landmarks Speech modification using acoustic properties of clear speech Landmarks Intro. 2/2
6
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 5/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. ACOUSTIC PROPERTIS OF CLEAR SPEECH Clear speech: speech produced with clear articulation when talking to a hearing impaired listener, or in noisy environments Examples - http://www.acoustics.org/press/145th/clr-spch-tab.htm ‘the book tells a story’ ‘the boy forgot his book’ ConversationalClear Intelligibility of clear speech ▪ More intelligible for different classes of listeners & listening conditions ▪ Picheny et al. (1985): ~17% more intelligible than conversational speech Clear speech 1/5
7
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 6/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Acoustic properties of clear speech Picheny et al. (1986) Sentence level Reduced speaking rate (conv: 200 wpm, clr: 100 wpm) Larger variation in fundamental frequency Increased number of pauses, more pause durations Word level Less sound deletions More sound insertions Phonetic level Context dependent, non-linear increase in segment durations More targeted vowel formants Increase in consonant intensity Clear speech 2/5
8
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 7/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Clear speech 3/5 Acoustic cues in clear speech are more robust and discriminable Speech intelligibility of conversational speech can be improved by incorporating properties of clear speech Consonant-vowel intensity ratio (CVR) enhancement Increasing the ratio of rms energy of consonant segment to nearby vowel Consonant duration enhancement Increasing VOT, burst duration, formant transition duration Difficulties Detection of regions for modification Performing modification with low signal processing artifacts
9
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 8/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Earlier studies on CVR enhancement House et al. (1965): MRT, high scores for high consonant level Gordon-Salant (1986): CVR +10dB, 19 CV, Elderly SNHI, +16% Guelke (1987): Burst intensity +17 dB, stop CV, NH, +40% Montgomery et al. (1987): CVR -20 dB to +9 dB, CVC, NH, SNHI, no significant loudness increase Freyman & Nerbonne (1989): Equated consonant levels across talkers, CV syllables, NH, +12% Thomas & Pandey (1996): CVR +3 to +12 dB, CV & VC, NH, +16% Kennedy et al. (1997): CE 0-24 dB, VC, SNHI, max CE: 8.3 dB (voiced), 10.7 dB (unvoiced) Hazan & Simpson (1998): Burst +12 dB, fric. +6 dB, nas. +6 dB filtering, VCV, SUS, NH, +12% Clear speech 4/5
10
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 9/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Earlier studies on duration enhancement Gordon-Salant (1986): DUR +100%, marginal improvement Thomas & Pandey (1996): BD +100%, FTD +50%, VOT +100% BD, FTD → improved scores, VOT → degraded Vaughan et al. (2002): Unvoiced consonants expanded by 1.2, 1.4 1.4 effective in noisy condition Nejime & Moore (1998): Voiced segments expanded by 1.2, 1.5 Degraded performance Liu & Zeng (2006): Temporal envelope (2-50 Hz) contributes at positive SNRs Fine structure (> 500 Hz) contributes at lower SNRs Hodoshima et al. (2007): Slowed down, steady-state suppressed speech more intelligible in reverberant environments Clear speech 5/5
11
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 10/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. AUTOMATED DETECTION OF TRANSITION SEGMENTS Auto.Trans. 1/3 Identifying regions for enhancement - segmentation / landmark detection Manual segmentation accurate high detection rate time consuming subjective useful only for research & not for actual application Automated detection of segments low detection rate less accurate consistent Segmentation based on Spectral Transition Measures maximum spectral transitions coincide with segment boundaries
12
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 11/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Earlier studies on automated segmentation Mermelstien (1975): based on loudness variation, low detection rate, slow carefully uttered speech Glass & Zue (1988): based on auditory critical bands, detection rate 90%, ± 20ms Sarkar & Sreenivas (2005): based on level crossing rate, adaptive level allocation, detection rate 78.6%, ± 20ms Alani & Deriche (1999): wavelet transform based, energy in different bands, detection rate 90.9%, ± 20ms Liu (1996): landmark detection algorithm, energy variation in spectral bands, detection rate 83%, ± 20 ms Auto.Trans. 2/3
13
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 12/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Earlier studies on automated intelligibility enhancement Colotte & Laprie (2000) Segmentation by spectral variation function (82%) Stops and unvoiced fricatives amplified by +4 dB Time-scaled by 1.8, 2.0 (TD-PSOLA) Missing word identification, TIMIT sentences Improved performance Skowronski & Harris (2006) Spectral transition measure based voiced/unvoiced classification Energy redistribution in voiced / unvoiced segments (ERVU) Amplifying low energy temporal regions critical to intelligibility Confusable words TI-46 corpus, 16 talkers, 25 subjects Improved performance for 9 talkers, no degradation for others Enhancement useful for native & non-native listeners Auto.Trans. 3/3
14
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 13/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. PROPOSED METHOD FOR INTELLIGIBILITY ENHANCEMENT VC and CV transition segments expanded, steady-state segments compressed, overall speech duration kept unaltered Intensity scaling of transition segments (CVR enhancement) Objective : reducing the masking of consonantal segments by vowel segments Intel. Enh. 1/15
15
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 14/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Liu’s Landmark detection algorithm ▪ Based on energy variation in 6 spectral bands ▪ Segment duration, articulatory, and phonetic class constraints ▪ Glottal, sonorant closures, releases, stop closures, releases ▪ Peak picking based on convex-hull algorithm ▪ Matching of peaks across bands for locating boundaries ▪ Detection rate 83%, accuracy ± 20ms Observations Assumptions in the method Spectral prominence represented by peak energy in the band One spectral prominence per band Information regarding frequency location of peak energy not used Intel. Enh. 2/15
16
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 15/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Landmark detection using spectral peaks and centroids Spectrum divided into five non-overlapping bands 0–0.4, 0.4–1.2, 1.2–2.0, 2.0–3.5, 3.5–5.0 kHz Spectral peak and centroid estimated in each band & used for calculating transition index Peak energy Centroid frequency Rate-of-rise functions Transition index Intel. Enh. 3/15
17
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 16/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Spectral peak & centroid variation in bands Example: /aka/ Centroid variation not necessarily in phase with energy variation Transitions: Some of energy peaks and centroids undergo change 0-0.4 kHz 0.4-1.2 kHz 1.2-2.0 kHz 2.0-3.5 kHz 3.5-5.0 kHz Intel. Enh. 4/15
18
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 17/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Peak & centroid ROR contours Observation: Product of two RORs near-to-zero during steady-states & peaks during transition segments Example: /aba/ 0-0.4 kHz 0.4-1.2 kHz 1.2-2.0 kHz 2.0-3.5 kHz 3.5-5.0 kHz Intel. Enh. 5/15
19
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 18/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Detection of transition segments spectrogram transition index boundaries /aba/ Intel. Enh. 6/15 (a) Signal waveform for VCV syllable /aka/ (b) Spectrogram, (c) Transition index (d) transition boundaries detected. waveform
20
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 19/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. sentence ‘ put the butcher block table’, (b) TIMIT landmarks, and (c) detected landmarks. Manual annotation: “bcl”- / b / closure onset, “b”- / b / release burst, etc. Automatic detection: landmarks numbered as 5, 6,..etc. (a) (b) (c) Intel. Enh. 7/15 Evaluation using sentences
21
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 20/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Evaluation using sentences 50 manually annotated sentences from TIMIT database 5 speakers: 3 female, 2 male Detection rates ST-stop FR-fricative NAS-nasal V-vowel SV-semivowel Intel. Enh. 8/15
22
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 21/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Harmonic plus noise model (HNM) (Stylianou 1996) Harmonic part / Deterministic part (quasi periodic components of speech) modeled by harmonics of fundamental frequency Noise part /stochastic part (non periodic components) modeled by LPC coefficients, energy envelope Intel. Enh. 9/15
23
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 22/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. HNM parameters ( Lehana and Pandey ) Voiced / Unvoiced Classification (V/UV) Harmonic part pitch F 0 Maximum voiced frequency F m Amplitudes and phases of harmonics A k Noise part LPC coefficients Energy envelope Voiced Frame →parameters (Harmonic part + noise part ) Unvoiced Frame → parameters (noise part ) Intel. Enh. 10/15
24
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 23/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. HNM based analysis stage Modification using a small parameter set Low perceptual distortions, preserves naturalness and intelligibility HNM analysis stage Intel. Enh. 11/15
25
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 24/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. HNM based time-scale modification stage Scaling factors Intel. Enh. 12/15
26
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 25/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. SNRorig.+6 dB+3 dB0 dB-2 dB-4 dB-6 dB aba Syn. Tsm. = 1.5 Tsm. = 2 Tsm. = 3 Example: VCV syllable /aba/ Time scaling of consonant duration with steady-state compression Intel. Enh. 13/15
27
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 26/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. /ama/ Spectrograms: Time-scaled VCV syllable Orig. Synth. β=1.5 β= 2 β= 2.5 Steady-state compression Transition segment expansion Intel. Enh. 14/15
28
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 27/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. /aba/ Original Time-scaled Intensity enhanced +6dB Time and Intensity scaling: VCV syllable Intel. Enh. 15/15
29
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 28/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. EXPERIMENTAL RESULTS Test material - VCV syllables /aba/, /ada/, /aga/, /apa/, /ata/, /aka/ Time scaling factors : 1.0, 1.2, 1.5, 1.8, 2.0 CVR enhancement : +6 dB 12 processing conditions Unprocessed: UP Enhanced CVR without time-scaling: E Time scaled: TS-1.0, TS-1.2, TS-1.5, TS-1.8, TS ‑ 2.0 Enhanced CVR, time scaled: ETS-1.0, ETS-1.2, ETS-1.5, ETS ‑ 1.8, ETS-2.0 Simulated hearing impairment (adding broadband noise) 6 different SNR levels (inf, 0, -3, -6, -9, and -12 dB) 72 test conditions 60 presentations, 5 tests for each condition,1 subject Exp. Res. 1/2
30
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 29/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. Results Time-scaling factors 1.2-1.5 appears to be optimum Time-scaling improves performance at lower SNR levels Consonant intensity enhancement more effective Exp. Res. 2/2
31
IIT Bombay arjayani@ee.iitb.ac.in ICSCN 2008 - International Conference on Signal Processing, Communications and Networking 30/30 Intro.Intro. Clear speech Trans.Det. Mod. Exp. Res. Sum.Clear speechTrans.Det.Mod.Exp. Res.Sum. SUMMARY & CONCLUSION Processing improved recognition scores for stop consonants Without increasing overall speech duration Method found more effective at lower SNR levels Place feature identification improved significantly by processing Intensity enhancement found more effective than duration enhancement To be investigated Optimum scaling factors for different speech material Testing using different speech material Testing on more number of subjects & subjects with sensorineural impairment Analysis in terms of vowel context, consonant category Quantitative analysis of Intelligibility enhancement - MRT
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.