Download presentation
Presentation is loading. Please wait.
Published byTeresa Bethany Marsh Modified over 8 years ago
1
Interacciones Proteína - Proteína Fuertes (t = s, min) Complejos proteicos (estables) Débiles (t = s, ms) Complejo intermediario (transitorio) en una reacción enzimática
2
Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261 Interactions between functional groups
3
Interactions between proteins of different compartments Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261
4
Tong et al. (2002) Science 295, 321-324 Yeast SH3 domains — which recognize proline- rich peptides — generated a network containing 394 interactions among 206 proteins
5
An interaction map of the yeast proteome assembled from published interactions Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261
6
..\..\LINKS\Ho Nature(2002).pdf Ho et al. (2002) Nature 415, 180 Protein network in Saccharomyces cerevisiae
7
Kumar & Snyder (2002) Nature 415, 123-124 Ho, Y et al. (2002) Nature 415, 180 - 183 Analysing protein interactions: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
8
T. Iiri et al. (1998) Nature 394, 35-38 How does a trimeric G protein on the inside of a cell membrane respond to activation by a transmembrane receptor? Trimeric ( ) G proteins relay signals from transmembrane receptors to intracellular enzymes and ion channels, thereby mediating vision, smell, taste and the actions of many hormones and neurotransmitters
9
T. Iiri et al. (1998) Nature 394, 35-38 The GTPase cycle of trimeric G proteins The 'turn-on' step begins when the activated receptor (R*) associates with the trimer of ( GDP ), causing dissociation of GDP. Then GTP binds to the complex of R* with the trimer in its 'empty' state ( e ), and the resulting GTP-induced conformational change causes GTP to dissociate from R* and from . After the 'turn-off' step (hydrolysis of bound GTP to GDP and inorganic phosphate, P i ), GDP reassociates with .
10
T. Iiri et al. (1998) Nature 394, 35-38 Contacts between G (left) and G -GDP (right) Red dashed lines indicate contacts that appear to be required for receptor activation but not for G –G association; green dashed lines indicate contacts that are important for both functions
11
T. Iiri et al. (1998) Nature 394, 35-38 How does a trimeric G protein on the inside of a cell membrane respond to activation by a transmembrane receptor? Biomedical relevance: G-protein mutations in patients with hypertension and inherited endocrine disorders enhance or block signals from stimulated receptors.
12
A. Chiarugi & M.A. Moskowitz (2002) Science 297, 200 PARP-1: A Perpetrator of Apoptotic Cell Death Apoptotic cell death is triggered by activation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Through unknown mechanisms, PAR formation and NAD + depletion may trigger a cascade of events.
13
Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22
14
Cyt c 6 Pc PS I b6fb6f PSI-driven Electron Transfer Fd light
15
Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22
16
PROKARYOTES Time (10 9 years ago) 4 3 2 1 0 Atmospheric Level (fractions of 21% v/v) 0.001 0.01 0.1 1 (Adapted from Peschek, 1996) Oxygen content of the earth's atmosphere EUKARYOTES Photosynthetic O 2 production Pasteur Point (O 2 respiration) Berkner-Marshall Point (Terrestrial life)
17
Cu Fe S 2- SO 4 2- Time (10 9 years ago) 4 3 2 1 0 Availability (Adapted from Williams & Silva, 1997)
18
Plastocyanin Cu ligands: His-35 Cys-84 His-87 Met-92
19
Heme ligands: His-19 Met-61 Cytochrome c 6
20
___________________________________________________ Organism Protein pI ___________________________________________________ Spinach Plastocyanin 4.2 Monoraphidium Plastocyanin 3.7 Cytochrome c 6 3.6 Anabaena Plastocyanin 9.0 Cytochrome c 6 9.0 Synechocystis Plastocyanin 5.5 Cytochrome c 6 5.6 ____________________________________________________ Isoelectric point of cytochrome c 6 and plastocyanin isolated from different organisms
21
Cytochrome c 6 Plastocyanin De la Rosa et al. (2002) Bioelectrochemistry 55, 41-45
22
Photosynthetic organisms growing under controlled conditions
24
A = 2 x 10 -3
25
Routes c: 1 2 3 3' 4 h b: 1 2 2' 3' 4 h a: 1 1' 2' 3' 4 h Prot red + PSI red 1 [Prot red... PSI red ]* K R 3 Prot ox + PSI red k et 4 [Prot red... PSI ox ]* h 3' Prot red + PSI ox [Prot red... PSI ox ] h h K' R K' A 1'2' [Prot red... PSI red ] K A 2 De la Rosa et al. (2002) Bioelectrochemistry 55, 41-45
27
KINETIC TYPES FOR THE REACTION MECHANISM Type I Prot red + PSI ox Prot ox + PSI red Type II Prot red + PSI ox [Prot red... PSI ox ] Prot ox + PSI red Type III Prot red + PSI ox [Prot red... PSI ox ] [Prot red... PSI ox ]* Prot ox + PSI red KINETIC TYPES FOR THE REACTION MECHANISM Type I Prot red + PSI ox Prot ox + PSI red Type II Prot red + PSI ox [Prot red... PSI ox ] Prot ox + PSI red Type III Prot red + PSI ox [Prot red... PSI ox ] [Prot red... PSI ox ]* Prot ox + PSI red KINETIC TYPES FOR THE REACTION MECHANISM Type I Prot red + PSI ox Prot ox + PSI red Type II Prot red + PSI ox [Prot red... PSI ox ] Prot ox + PSI red Type III Prot red + PSI ox [Prot red... PSI ox ] [Prot red... PSI ox ]* Prot ox + PSI red KINETIC TYPES FOR THE REACTION MECHANISM Type I Prot red + PSI ox Prot ox + PSI red Type II Prot red + PSI ox [Prot red... PSI ox ] Prot ox + PSI red Type III Prot red + PSI ox [Prot red... PSI ox ] [Prot red... PSI ox ]* Prot ox + PSI red Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22
28
Flexibilidad estructural de la plastocianina
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.