Presentation is loading. Please wait.

Presentation is loading. Please wait.

High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL.

Similar presentations


Presentation on theme: "High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL."— Presentation transcript:

1 High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL

2 Non electro-magnetic “messengers” MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse)  physics High energy n & GW detectors New, non-EM windows Penetrate deep into the source Travel unhindered across the universe This talk The Astrophysics case for HEN detectors Relation to GW detectors Fundamental physics

3 High energy  ’ s: A new window >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (~Galactic) sources [10kt @ 1MeV  1Gton @ TeV,  TeV /  MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp   ’s  ’s]  physics

4 HEN detector motivation: Cosmic accelerators Cosmic-ray E [GeV] log [dJ/dE] 1 10 6 10 E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic X-Galactic (?) [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00] Source: Supernovae(?) Source? Lighter

5 The 10 20 eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Waxman 95, 04, Norman et al. 95]

6 What do we know about >10 19 eV CRs? X-Galactic - R L =  /eB=40  p,20 kpc >> h disk =0.1kpc (kpc=3 light yr) - L>10 12 (  2 /  ) L sun Composition

7 Composition clues HiRes 2005

8 What do we know about >10 19 eV CRs? X-Galactic - R L =  /eB=30  p,20 kpc >> hdisk=0.1kpc (kpc=3 light yr) - L>10 12 (  2 /  ) L sun Composition- light nuclei? Spectrum

9 [Waxman 1995; Bahcall & Waxman 03] [Katz & Waxman 09] E 2 (dN/dE)=E 2 (dQ/dE) t eff. (t eff. : p +  CMB  N +  Assume: p, dQ/dE~(1+z) m E -  >10 19.3 eV: consistent with protons, E 2 (dQ/dE) ~10 43.7 erg/Mpc 3 yr + GZK E 2 (dQ/dE) ~Const.: Consistent with shock acceleration [Krimsky 77; Bednarz & Ostrowski 98; Keshet & Waxman 05 cf. Lemoine & Revenu 06] Flux & Spectrum ct eff [Mpc] GZK (CMB) suppression log(E 2 dQ/dE) [erg/Mpc 2 yr]

10 What do we know about >10 19 eV CRs? X-Galactic - R L =  /eB=30  p,20 kpc >> hdisk=0.1kpc (kpc=3 light yr) - L>10 12 (  2 /  ) L sun Composition- light nuclei? Spectrum >10 19.3 eV: consistent with protons, E 2 (dQ/dE) ~10 43.7 erg/Mpc 3 yr + GZK Sources: - L>10 12 (  2 /  ) L sun - E 2 (dQ/dE) ~10 43.7 erg/Mpc 3 yr - d(10 20 eV)<d GZK ~100Mpc !! No L>10 12 L sun at d<d GZK  Transient Sources

11 Anisotropy clues Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [Waxman, Fisher & Piran 1997] Biased (  source ~  gal for  gal >  gal ) [Kashti & Waxman 08] Cross-correlation signal in the > 10 19.7 eV Auger data: Anisotropy @ 98% CL; Consistent with LSS (Few fold increase  >99% CL, but not 99.9% CL) Correlation (~1.5  ) suggests astrophysical ( “ bottom up ” ) accelerators

12 Suspects - L>10 12 (  2 /  ) L sun - E 2 (dQ/dE) ~10 43.7 erg/Mpc 3 yr Gamma-ray Bursts (GRBs)  ~ 10 2.5, L  ~ 10 19 L Sun  L/  2 >10 12 L sun (dn/dVdt)*E~10 -9.5 /Mpc 3 yr *10 53.5 erg ~10 44 erg/Mpc 3 yr Transient:  T  ~10s,  T p /  T  ~10 11 Active Galactic Nuclei (AGN, Steady):  ~ 10 1  L>10 14 L Sun = few brightest !! Non at d<d GZK  Invoke: “ Dark ” (proton only) AGN L~ 10 14 L Sun,  t~1month flares from stellar disruptions [Blandford 76; Lovelace 76] [Waxman 95, Vietri 95, Milgrom & Usov 95] [Waxman 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

13 Virgo cluster: 50 million light yrs M87 Extra-galactic Jets: some pic ’ s

14 Multi-wavelength observations X-ray Radio

15 Chandra, Cen A

16 GRB: 10 19 L Sun, M BH ~1M sun, M~1M sun /s,  ~10 2.5 AGN: 10 14 L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr,  ~10 0.5 Source physics challenges Particle acceleration

17 Collapse of a massive star (>20M sun ) Long bursts (10s)? The GRB “ engine ” Progenitor: Compact Binary Merger (NS-NS, NS-BH) Short (0.1s) bursts? [Woosley 93; Paczynski 98] [Goodman 86; Paczynski 86 Narayan, Paczynski & Piran 02] E  ~10 51.5 erg (E ,apparent ~10 53.5 erg) +  t~1ms  Grav. Collapse of few M sun to BH (E~Mc 2,  t~GM/c 3 ) T~0.1-10s >>  t~1ms  Accretion disk 100MeV photons   >100

18 Long GRBs and SNe 4 long GRBs associated with SN Ib/c (core collapse of massive He, C/O progenitors) - 3 have E ,apparent ~10 48 erg~10 -5 x10 53 erg, 1 intermediate - 2 SN-less long GRBs “SN Ib/c origin of long GRBs definitively established” Some (<10 -2 ) SN Ib/c produce (low L?) GRBs - What determines whether to GRB or not to GRB? (“failed” vs. “successful” jets?) - Do all core-collapse SN produce jets? - Do jets play a major role in ejecting the envelopes in all core-collapse SNe? (envelope ejection- major open Q) [Woosley & Bloom 06]

19 Massive BHs @ Galactic centers Existence inferred from - AGN activity - Stellar motions - Disk Water Masers M BH ~10 6.5 M sun M BH ~10 7.5 M sun R obs ~10 4 R S  Really BHs? [Genzel et al.][Miyoshi et al. 95] [Salpeter 64; Zel’dovich & Novikov 64]

20 MBH “ progenitor ” Q ’ s MBH “ seeds ” - ~100M sun from 1 st generation massive stars - ~10 4 M sun from direct collapse What is the outcome of galaxy mergers? (BH merger by gas/stellar drag?) The role of accretion vs. mergers? [e.g. Madau & Rees 01] [e.g. Rees 78]

21 GRB: 10 19 L Sun, M BH ~1M sun, M~1M sun /s,  ~10 2.5 AGN: 10 14 L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr,  ~10 0.5 Source physics challenges Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms

22 HE  Astronomy p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics E 2 dQ/dE=10 44 erg/Mpc 3 yr &   p <1:  ~1 Giga-ton (~1 km 3 ) detector required If X-G p ’ s:  Identify primaries, determine f(z) [Waxman & Bahcall 99] [Berezinsky & Zatsepin 69 ]

23 HE experiments Optical Cerenkov - South Pole Amanda: 677 OM, 0.05 km 3 IceCube: +~800/yr OM (05/06 … ) 4800 OM=1 km 3 s - Mediterranean Antares: 12 lines (5/08), 900 OM, ~0.1 km 3 Nestor: (?)  0.1 km 3 km3Net: R&D  1 km 3 UHE: Radio Air shower Aura, Ariana (in Ice) Auger (  ) ANITA (Balloon) EUSO (?) LOFAR

24 GRB ’ s “ Generic ” baryonic jet ’ s Background free (Successful/failed) Jet penetration of massive stellar envelope  Enhanced TeV emission [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04] [Meszaros & Waxman 01; Razzaque, Meszaros & Waxman 03, 04; Guetta & Granot 03; Dermer & Atoyan 03; Horiuchi & Ando 08]

25 The current limit [Achterberg et al. 07 (The IceCube collaboration)]

26 Jets driving core collapse SNe? Mildly relativistic,  ~3, E~10 51.5 erg jet driving a core-collapse SN  N  (>100GeV)~1 (D/20Mpc) -2 /km 2 SN rate within 20Mpc ~10/yr [Razzaque, Meszaros & Waxman 04; Ando & Beacom 05; Horiuchi & Ando 08]

27 AGN models BBR05 Individual sources unlikely to be identified

28 - physics & astro-physics  decay  e :  :  = 1:2:0 (Osc.)  e :  :  = 1:1:1  appearance experiment GRBs: -  timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of  ’ s (and  ’ s)  e :  :  = 1:1:1 (E>E 0 )  1:2:2  GRBs: E 0 ~10 15 eV [Rachen & Meszaros 98; Kashti & Waxman 05] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Waxman & Bahcall 97]

29 GW Astronomy NS-NS(BH) merger Rapid mass motion (changing quadrapole moment)  GW: g  =   +h , u~(  ch) 2 /G P~G  2 (mv 2 ) 2 /c 5 h~(v/c) 2 R s /D ~ R s 2 /d*D (R s =2GM/c 2 ) Detection: R s (1M sun )=3*10 5 cm=3km D*h~10 5 cm Lisa science paper

30 Km-scale detectors LIGO (x3), Virgo (GEO600, TAMA) NS-NS(BH): D*h~10 5 cm  D~30Mpc GRB rate ~1/100yr  x10 improvement required (Advanced LIGO) Core-collapse SNe (~10/yr out to 20Mpc)? If driven by Proto-NS oscillations (+ coupling of l=1 & l=2 modes)  v/c~0.1, ~0.1M, h*D~10 2.5 cm LIGO detector noise [Ott et al. 06]

31 MBHs @ Galactic centers 10 10 galaxies in Hubble volume Each undergone a merger in Hubble time  1 [x log(M max /M min )] MBH merger/yr Open Q ’ s reminder: Seed mass, Merger/accretion R s (10 6.5 M sun )=10 12 cm=10 7 km [Volonteri 06]

32 LISA: ~10 12 cm space detector MBH In-spiral, merger & relaxation Confirm: GR MBH Study: MBH formation history MBH properties Stellar dynamics near MBH MBH-10M sun BH merger Test GR MBH Lisa science paper

33 GR & Cosmology tests Detect GW (directly) Confirm GR BHs BH-BH mergers: “ clean ”, signal (should be) precisely calculable  Precision tests of strong field GR Absolute D L (z): h~R s /D L,  ~(1+z) -1 c/R s Requires: Optical z; Challenge:  >1 o Constrain geometry, Dark energy EOS..

34 Outlook HEN & GW detectors: New non-EM windows (unknown unknowns?) Open Q ’ s (known unknowns) - Composition, origin & acceleration of CRs - GRB progenitors - Core collapse supernovae mechanism - Formation, evolution & properties of MBHs - Accretion, energy extraction & jet formation by BHs - The environment of MBHs - D L (z) -  Oscillations  appearance) -  Timing  LI to 1:10 16 ; WEP to 1:10 6 - Confirm: GW, GR BH - Test strong field GR [DM annihilation detection, relic GW background] EM identification crucial - Reduce backgrounds - Astro and fundamental physics implications

35 AMANDA & IceCube

36 The Mediterranean effort ANTARES (NESTOR, NEMO)  KM3NeT

37 Back up slides

38


Download ppt "High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL."

Similar presentations


Ads by Google