Presentation is loading. Please wait.

Presentation is loading. Please wait.

3D Geometry and Transformations

Similar presentations


Presentation on theme: "3D Geometry and Transformations"— Presentation transcript:

1 3D Geometry and Transformations
11 고려대학교 컴퓨터학과 김 창 헌

2 Contents Translation Scaling Rotation Other transformations
Transformation of coordinate systems

3 Transformation in 3D 33 : Scaling, Reflection, Shearing, Rotation
31 : Translation 11 : Uniform global Scaling 13 : Homogeneous representation

4 3D Translation Translation of a Point y x z

5 3D Scaling Uniform scaling y x z

6 Relative Scaling Scaling with a selected fixed position x z y
Original position Translate Scaling Inverse Translate

7 3D Rotation 1. Coordinate-Axes Rotations
좌표축을 기준으로 회전 2. General Three-Dimensional Rotations 좌표축에 평행한 회전축 기준 회전 임의의 회전축(직선) 기준 회전

8 Coordinate-Axis Rotations
y X축 중심 회전 Z 축 중심 회전 x z x축 중심 회전 y z y x z축 중심 회전 Y축 중심 회전 x z y축 중심 회전

9 Order of rotations affects the final position of an object

10 Rotation about an Principal axis
 좌표축과 평행한 회전축 중심 회전 물체를 좌표축과 평행하게 이동 (회전축이동) 회전 물체를 원위치로 이동 (회전축 원위치)

11 Rotation about an arbitrary axis
 Basic Idea 1. 원점을 지나도록 회전축을 평행이동 2. 좌표축과 일치하도록 회전축을 회전 3. 축에 대한 회전 4. 회전축을 원래 방향으로 역회전 5. 회전축을 원위치로 평행 이동 y T (x2,y2,z2) R (x1,y1,z1) R-1 x T-1 z

12 Rotation about an arbitrary axis
Step 1. Translation (x2,y2,z2) (x1,y1,z1) x z y

13 Rotation about an arbitrary axis
Step 2. Establish [ TR ]x x axis y (0,b,c) (a,b,c) Projected Point x z Rotated Point

14 Rotation about an arbitrary axis
Step 3. Rotate about y axis by  y (a,b,c) l Projected Point d x (a,0,d) Rotated Point z

15 Rotation about an arbitrary axis
Step 4. Rotate about z axis by the desired angle  y l x z

16 Rotation about an arbitrary axis
Step 5. Apply the reverse translation to place the axis back in its initial position x z y l

17 Rotation about an arbitrary axis
Ex) Find the new coordinates of a unit cube rotated about an axis defined by its endpoints A(2,1,0) and B(3,3,1). Step1. Translate point A to the origin y B’(1,2,1) A’(0,0,0) x A Unit Cube z

18 Rotation about an arbitrary axis
Step 2. Rotate axis A’B’ about the x axis by and angle , until it lies on the xz plane. y Projected point (0,2,1) B’(1,2,1) l x z B”(1,0,5)

19 Rotation about an arbitrary axis
Step 3. Rotate axis A’B’’ about the y axis by and angle , until it coincides with the z axis. y l x (0,0,6) B”(1,0,  6) z

20 Rotation about an arbitrary axis
Step 4. Rotate the cube 90° about the z axis Finally, the concatenated rotation matrix about the arbitrary axis AB becomes,

21 Rotation about an arbitrary axis

22 Rotation about an arbitrary axis
Multiplying [TR]AB by the point matrix of the original cube

23 3D Reflections & Shears Reflection relative to the xy plane
z-axis shear y y z z x x

24 Transformation of Coordinate System
Front-Wheel Tractor System World Coordinate Coordinate Coordinate

25 Transformation of Coordinate System
Use of Multiple Coordinate System zworld


Download ppt "3D Geometry and Transformations"

Similar presentations


Ads by Google