Download presentation
Presentation is loading. Please wait.
Published byNorma Allen Modified over 8 years ago
1
Constraints to Dark Matter and cosmic ray propagation by the PAMELA space experiment Roberta Sparvoli University of Rome ”Tor Vergata” and INFN
2
Roberta Sparvoli October 8th, 2009 Como (Italy) Everything starts with …
3
Roberta Sparvoli October 8th, 2009 Como (Italy) Anti-nucleosyntesis WIMP dark-matter annihilation in the galactic halo Background: CR interaction with ISM CR + ISM p-bar + … Evaporation of primordial black holes and various ideas of theoretical interpretations
4
Roberta Sparvoli October 8th, 2009 Como (Italy)
6
CR antimatter Antiprotons Positrons CR + ISM ± + x ± + x e ± + x CR + ISM 0 + x e ± Propagation dominated by energy losses (inverse Compton & synchrotron radiation) Local origin (@100GeV 90% from <2kpc) ___ Moskalenko & Strong 1998 Positron excess? Charge-dependent solar modulation Solar polarity reversal 1999/2000 Asaoka Y. Et al. 2002 ¯ + C R + I S M p - b a r + … P r o p a g a t i o n d o m i n a t e d b y n u c l e a r i n t e r a c t i o n s K i n e m a t i c a l t h r e s h o l d : E t h ~ 5. 6 f o r t h e r e a c t i o n Experimental scenario before PAMELA WHAT DO WE NEED TO BETTER UNDERSTAND ? Measurements at higher energies Better knowledge of background High statistics Continuous monitoring of solar modulation Long Duration Flights
7
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA pre-history
8
Roberta Sparvoli October 8th, 2009 Como (Italy) Moscow St. Petersburg Russia Sweden KTH, Stockholm Germany Siegen Italy BariFlorenceFrascatiTriesteNaplesRome CNR, Florence The PAMELA collaboration
9
Roberta Sparvoli October 8th, 2009 Como (Italy) p-bar, e + Halo PAMELA Scientific goals
10
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA design performance energy range particles in 3 years Antiprotons 80 MeV ÷190 GeV O(10 4 ) Positrons 50 MeV ÷ 270 GeV O(10 5 ) Electrons up to 400 GeVO(10 6 ) Protons up to 700 GeVO(10 8 ) Electrons+positrons up to 2 TeV (from calorimeter) Light Nuclei up to 200 GeV/n He/Be/C:O(10 7/4/5 ) Anti-Nuclei search sensitivity of 3x10 -8 in anti-He/He Magnetic curvature & trigger spillover shower containment Maximum detectable rigidity (MDR)
11
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA detectors GF: 21.5 cm 2 sr Mass: 470 kg Size: 130x70x70 cm 3 Power Budget: 360W Spectrometer microstrip silicon tracking system + permanent magnet It provides: - Magnetic rigidity R = pc/Ze - Charge sign - Charge value from dE/dx Time-Of-Flight plastic scintillators + PMT: - Trigger - Albedo rejection; - Mass identification up to 1 GeV; - Charge identification from dE/dX. Electromagnetic calorimeter W/Si sampling (16.3 X0, 0.6 λI) - Discrimination e+ / p, anti-p / e - (shower topology) - Direct E measurement for e - Neutron detector 36 He3 counters - High-energy e/h discrimination Main requirements high-sensitivity antiparticle identification and precise momentum measure + -
12
Roberta Sparvoli October 8th, 2009 Como (Italy) The Resurs DK-1 spacecraft
13
Roberta Sparvoli October 8th, 2009 Como (Italy)
15
PAMELA milestones Main antenna in NTsOMZ Launch from Baikonur June 15th 2006, 0800 UTC. ‘First light’ June 21st 2006, 0300 UTC. Detectors operated as expected after launch Different trigger and hardware configurations evaluated PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006 Trigger rate* ~ 25 Hz Fraction of live time* ~ 75% Event size (compressed mode) ~ 5kB 25 Hz x 5 kB/ev ~ 10 GB/day (*outside radiation belts) Today 1212 days in flight >14 TBytes of raw data downlinked >10 9 triggers recorded and under analysis
16
Roberta Sparvoli October 8th, 2009 Como (Italy) Antiproton/positron discrimination energy measurement
17
Roberta Sparvoli October 8th, 2009 Como (Italy) Antiparticle selection e-e-e-e- e+e+e+e+ p, d p ‘Electron’ ‘Hadron’
18
Roberta Sparvoli October 8th, 2009 Como (Italy) Antiprotons
19
Roberta Sparvoli October 8th, 2009 Como (Italy) Analyzed data July 2006 – February 2008 (~500 days) Collected triggers ~10 8 Identified ~ 10 10 6 protons and ~ 1 10 3 antiprotons between 1.5 and 100 GeV ( 100 p-bar above 20 GeV ) Antiproton/proton identification: rigidity (R) SPE |Z|=1 (dE/dx vs R) SPE&ToF vs R consistent with M p ToF p-bar/p separation (charge sign) SPE p-bar/e - (and p/e + ) separation CALO Dominant background spillover protons: finite deflection resolution of the SPE wrong assignment of charge-sign @ high energy proton spectrum harder than antiproton p/p-bar increase for increasing energy (10 3 @1GV 10 4 @100GV) Required strong SPE selection High-energy antiproton analysis
20
Roberta Sparvoli October 8th, 2009 Como (Italy) Proton-spillover background Electrons: efficiently removed by CALO Pions (from interactions in dome) : about 3% in the pbar sample
21
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA: Antiproton-to-proton ratio PRL 102, 051101 (2009)
22
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA: Antiproton-to-proton ratio PRL 102, 051101 (2009)
23
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA: Antiproton-to-proton ratio New (preliminary) data ! Full statistics
24
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA: Antiproton flux preliminary PAMELA
25
Roberta Sparvoli October 8th, 2009 Como (Italy) Positrons
26
Roberta Sparvoli October 8th, 2009 Como (Italy) High-energy positron analysis Analyzed data July 2006 – February 2008 (~500 days) Collected triggers ~10 8 Identified ~ 150 10 3 electrons and ~ 9 10 3 positrons between 1.5 and 100 GeV ( 180 positrons above 20 GeV ) Electron/positron identification: rigidity (R) SPE |Z|=1 (dE/dx=MIP) SPE&ToF =1 ToF e - /e + separation (charge sign) SPE e + /p (and e - /p-bar) separation CALO Dominant background interacting protons: fluctuations in hadronic shower development might mimic pure em showers proton spectrum harder than positron p/e + increase for increasing energy (10 3 @1GV 10 4 @100GV) Required strong CALO selection S1 S2 CALO S4 CARD CAS CAT TOF SPE S3 ND
27
Roberta Sparvoli October 8th, 2009 Como (Italy) Positron identification with CALO Identification based on: – Shower topology (lateral and longitudinal profile, shower starting point) – Total detected energy (energy-rigidity match) Analysis key points: – Tuning/check of selection criteria with: test-beam data simulation flight data dE/dx from SPE & neutron yield from ND – Selection of pure proton sample from flight data (“pre-sampler” method): Background-suppression method Background-estimation method Final results make NO USE of test-beam and/or simulation calibrations. The measurement is based only on flight data with the background-estimation method 51 GV positron 80 GV proton
28
Roberta Sparvoli October 8th, 2009 Como (Italy) Particle selection after total energy cut and starting point of the shower + - e+e+ e - p (anti p)
29
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA: Positron fraction NATURE 458, 697, 2009 Solar modulation effects Anomalous increasing ? (Moskalenko & Strong 1998) GALPROP code Plain diffusion model Interstellar spectra
30
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA: Positron fraction wrt other exp’s NATURE 458, 697, 2009
31
Roberta Sparvoli October 8th, 2009 Como (Italy) Different statistical approaches for the bkg Data: July 2006 December 2008
32
Roberta Sparvoli October 8th, 2009 Como (Italy) New data + systematic error Data: July 2006 December 2008 In publication on APP !
33
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA antimatter data: Do we have any antimatter excess in CRs?
34
Roberta Sparvoli October 8th, 2009 Como (Italy) Antiproton-to-proton ratio Secondary Production Models No evidence for any antiproton excess NB! Solar modulation Nuclear cross-section … CR + ISM p-bar + … ~20% Uncertainty band related to propagation parameters (~10% @10 GeV) Additional uncertainty of ~25% due to production cs should be considered !!
35
Roberta Sparvoli October 8th, 2009 Como (Italy) Positron fraction Secondary Production Models CR + ISM ± + … ± + … e ± + … CR + ISM 0 + … e ± Increasing positron fraction only if e - p > 0.6 unlikely (Serpico 2008) Quite robust evidence for a positron excess
36
Roberta Sparvoli October 8th, 2009 Como (Italy) Primary positron sources Dark Matter e + yield depend on the dominant decay channel LSPs (SUSY) seem disfavored due to suppression of e + e - final states low yield (relative to p-bar) soft spectrum from cascade decays LKPs seem favored because can annihilate directly in e + e - high yield (relative to p-bar) hard spectrum with pronounced cutoff @ M LKP (>300 GeV) Boost factor required to have a sizable e + signal NB: constraints from p-bar data!! Other hypothesys possible and under study (i.e. Minimal DM Model, decaying DM, new gauge bosons, …) LKP -- M= 300 GeV (Hooper & Profumo 2007) More than 150 articles claim DM is discovered !
37
Roberta Sparvoli October 8th, 2009 Como (Italy) Example: dark matter
38
Roberta Sparvoli October 8th, 2009 Como (Italy) Primary positron sources Astrophysical processes Local pulsars are well-known sites of e + e - pair production (t he spinning B of the pulsars strips e- that emit gammas then converting to pairs trapped in the cloud, accelerated and then escaping at the Poles) : they can individually and/or coherently contribute to the e + e - galactic flux and explain the PAMELA e + excess (both spectral feature and intensity) No fine tuning required if one or few nearby pulsars dominate, anisotropy could be detected in the angular distribution possibility to discriminate between pulsar and DM origin of e + excess All pulsars (rate = 3.3 / 100 years) (Hooper, Blasi, Seprico 2008)
39
Roberta Sparvoli October 8th, 2009 Como (Italy) Example: pulsars
40
Roberta Sparvoli October 8th, 2009 Como (Italy) Explanation with supernovae remnants Shaviz and al. astro-ph.HE 0902.0376
41
Roberta Sparvoli October 8th, 2009 Como (Italy) Positrons from old SNR’s P. Blasi 0903.2794
42
Roberta Sparvoli October 8th, 2009 Como (Italy) Standard Positron Fraction Theoretical Uncertainties T. Delahaye et al., arXiv: 0809.5268v3 γ = 3.54γ = 3.34 Need for high statistics CR measurements
43
Roberta Sparvoli October 8th, 2009 Como (Italy) Electrons Any positron source is an electron source too …
44
Roberta Sparvoli October 8th, 2009 Como (Italy) Recent claims of (e + +e - ) excess FERMI does not confirm the ATIC bump but finds an excess wrt conventional diffusive models = 3.0
45
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA electron flux measurements wrt other experiments Key points wrt other experiments (ATIC, HESS, FERMI) : Combination of CALO and SPECTROMETER allow energy self- calibration in flight no dependence on ground calibrations or MC simulations Very deep CALO (16 X 0 ) containment of the shower maximum beyond 1 TeV Neutron detector help proton rejection, especially at high energy No atmospheric contamination Possibility to disentangle electrons from positrons But.. Smaller acceptance lower statistics
46
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA electron flux preliminary
47
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA electron flux wrt other exp’s preliminary
48
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA electron flux preliminary Primary source ??? Data ready by the end of the year
49
Roberta Sparvoli October 8th, 2009 Como (Italy) Protons, nuclei, …
50
Roberta Sparvoli October 8th, 2009 Como (Italy) Galactic protons and Helium fluxes p He preliminary
51
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA proton and helium fluxes preliminary
52
Roberta Sparvoli October 8th, 2009 Como (Italy) Proton flux compared to prev. exp’s
53
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA secondary/primary nuclei ratios
54
Roberta Sparvoli October 8th, 2009 Como (Italy) PAMELA secondary/primary nuclei ratios preliminary
55
Roberta Sparvoli October 8th, 2009 Como (Italy) Solar modulation Interstellar spectrum July 2006 August 2007 February 2008 Decreasing solar activity Increasing GCR flux sun-spot number Ground neutron monitor PAMELA (statistical errors only)
56
Roberta Sparvoli October 8th, 2009 Como (Italy) Solar modulation
57
Roberta Sparvoli October 8th, 2009 Como (Italy) Low energy e + : charge dependent solar modulation effects
58
Roberta Sparvoli October 8th, 2009 Como (Italy) A > 0 Positive particles A < 0 ¯ + Charge dependent solar modulation
59
Roberta Sparvoli October 8th, 2009 Como (Italy) Summary ~40 14
60
Roberta Sparvoli October 8th, 2009 Como (Italy) Summary PAMELA positron fraction alone insufficient to understand the origin of positron excess Additional experimental data will be provided by PAMELA: – e+ fraction @ higher energy (up to 300 GeV) – individual e- and e+ spectra – anisotropy (…maybe) – high energy e + +e - spectrum (up to 2 TV) Complementary information from: – gamma rays – neutrinos PAMELA mission extended to end 2011 ! It will be possible to constrain further the nature of DM and models of cosmic ray propagation in the Galaxy.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.