Download presentation
Presentation is loading. Please wait.
Published byDarcy Lawrence Modified over 8 years ago
1
EE141 Arithmetic Circuits 1 Chapter 14 Arithmetic Circuits Rev. 1.0 05/12/2003
2
EE141 Arithmetic Circuits 2 A Generic Digital Processor
3
EE141 Arithmetic Circuits 3 Building Blocks for Digital Architectures Arithmetic unit - Bit-sliced datapath(adder, multiplier, shifter, comparator, etc.) Memory - RAM, ROM, Buffers, Shift registers Control - Finite state machine (PLA, random logic.) - Counters Interconnect - Switches - Arbiters - Bus
4
EE141 Arithmetic Circuits 4 An Intel Microprocessor Itanium has 6 integer execution units like this
5
EE141 Arithmetic Circuits 5 Bit-Sliced Design
6
EE141 Arithmetic Circuits 6 Bit-Sliced Datapath
7
EE141 Arithmetic Circuits 7 Itanium Integer Datapath Fetzer, Orton, ISSCC’02
8
EE141 Arithmetic Circuits 8 Adders
9
EE141 Arithmetic Circuits 9 Full-Adder
10
EE141 Arithmetic Circuits 10 The Binary Adder
11
EE141 Arithmetic Circuits 11 Express Sum and Carry as a function of P, G, D Define 3 new variable which ONLY depend on A, B Generate (G) = AB Propagate (P) = A B Delete =A B Can also derive expressions for S and C o based on D and P Propagate (P) = A B Note that we will be sometimes using an alternate definition for
12
EE141 Arithmetic Circuits 12 The Ripple-Carry Adder Worst case delay linear with the number of bits Goal: Make the fastest possible carry path circuit FA A 0 B 0 S 0 A 1 B 1 S 1 A 2 B 2 S 2 A 3 B 3 S 3 C i,0 C o ( C i,1 ) C o C o,2 C o,3 t d = O(N) t adder = (N-1)t carry + t sum
13
EE141 Arithmetic Circuits 13 Complimentary Static CMOS Full Adder 28 Transistors
14
EE141 Arithmetic Circuits 14 Inversion Property
15
EE141 Arithmetic Circuits 15 Minimize Critical Path by Reducing Inverting Stages Exploit Inversion Property
16
EE141 Arithmetic Circuits 16 A Better Structure: The Mirror Adder
17
EE141 Arithmetic Circuits 17 Mirror Adder Stick Diagram
18
EE141 Arithmetic Circuits 18 The Mirror Adder The NMOS and PMOS chains are completely symmetrical. A maximum of two series transistors can be observed in the carry- generation circuitry. When laying out the cell, the most critical issue is the minimization of the capacitance at node C o. The reduction of the diffusion capacitances is particularly important. The capacitance at node C o is composed of four diffusion capacitances, two internal gate capacitances, and six gate capacitances in the connecting adder cell. The transistors connected to C i are placed closest to the output. Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be minimal size.
19
EE141 Arithmetic Circuits 19 Transmission-Gate Full Adder
20
EE141 Arithmetic Circuits 20 Manchester Carry Chain
21
EE141 Arithmetic Circuits 21 Manchester Carry Chain
22
EE141 Arithmetic Circuits 22 Manchester Carry Chain Stick Diagram
23
EE141 Arithmetic Circuits 23 Carry-Bypass Adder Also called Carry-Skip
24
EE141 Arithmetic Circuits 24 Carry-Bypass Adder (cont.) t adder = t setup + M tcarry + (N/M-1)t bypass + (M-1)t carry + t sum
25
EE141 Arithmetic Circuits 25 Carry Ripple versus Carry Bypass
26
EE141 Arithmetic Circuits 26 Carry-Select Adder
27
EE141 Arithmetic Circuits 27 Carry Select Adder: Critical Path
28
EE141 Arithmetic Circuits 28 Linear Carry Select
29
EE141 Arithmetic Circuits 29 Square Root Carry Select
30
EE141 Arithmetic Circuits 30 Adder Delays - Comparison
31
EE141 Arithmetic Circuits 31 Look-ahead Adder - Basic Idea
32
EE141 Arithmetic Circuits 32 Look-Ahead: Topology Expanding Lookahead equations: All the way:
33
EE141 Arithmetic Circuits 33 Logarithmic Look-Ahead Adder
34
EE141 Arithmetic Circuits 34 Carry Lookahead Trees Can continue building the tree hierarchically.
35
EE141 Arithmetic Circuits 35 Tree Adders 16-bit radix-2 Kogge-Stone tree
36
EE141 Arithmetic Circuits 36 Tree Adders 16-bit radix-4 Kogge-Stone Tree
37
EE141 Arithmetic Circuits 37 Sparse Trees 16-bit radix-2 sparse tree with sparseness of 2
38
EE141 Arithmetic Circuits 38 Tree Adders Brent-Kung Tree
39
EE141 Arithmetic Circuits 39 Example: Domino Adder PropagateGenerate
40
EE141 Arithmetic Circuits 40 Example: Domino Adder PropagateGenerate
41
EE141 Arithmetic Circuits 41 Example: Domino Sum
42
EE141 Arithmetic Circuits 42 Multipliers
43
EE141 Arithmetic Circuits 43 Binary Multiplication Binary Multiplication
44
EE141 Arithmetic Circuits 44 Binary Multiplication Binary Multiplication
45
EE141 Arithmetic Circuits 45 Array Multiplier
46
EE141 Arithmetic Circuits 46 MxN Array Multiplier — Critical Path Critical Path 1 & 2
47
EE141 Arithmetic Circuits 47 Carry-Save Multiplier
48
EE141 Arithmetic Circuits 48 Multiplier Floorplan
49
EE141 Arithmetic Circuits 49 Wallace-Tree Multiplier
50
EE141 Arithmetic Circuits 50 Wallace-Tree Multiplier
51
EE141 Arithmetic Circuits 51 Wallace-Tree Multiplier
52
EE141 Arithmetic Circuits 52 Multipliers —Summary Identify Critical Paths Other Possible techniques: Data Encoding (Booth) Logarithmic v.s. Linear (Wallace Tree Multiplier) Pipelining
53
EE141 Arithmetic Circuits 53 Shifters
54
EE141 Arithmetic Circuits 54 The Binary Shifter
55
EE141 Arithmetic Circuits 55 The Barrel Shifter Area Dominated by Wiring
56
EE141 Arithmetic Circuits 56 4x4 barrel shifter Width barrel ~ 2 p m M
57
EE141 Arithmetic Circuits 57 Logarithmic Shifter
58
EE141 Arithmetic Circuits 58 A 3 A 2 A 1 A 0 Out3 Out2 Out1 Out0 0-7 bit Logarithmic Shifter
59
EE141 Arithmetic Circuits 59 Summary Datapath designs are fundamentals for high- speed DSP, Multimedia, Communication digital VLSI designs. Most adders, multipliers, division circuits are now available in Synopsys Designware under different area/speed constraint. For details, check “Advanced VLSI” notes, or “Computer Arithmetic”
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.