Download presentation
Presentation is loading. Please wait.
Published byMagnus Adrian Briggs Modified over 8 years ago
1
Predicting Osteoporotic Hip Fractures: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Modeling -- The European Fracture Study (EFFECT) Pierre Pottecher 1, Klaus Engelke 2, Laure Duchemin 1, Oleg Museyko 2, Thomas Moser 1 David Mitton 1, Eric Vicaut 1, Judith Adams 3, Wafa Skalli 4, Jean-Denis Laredo 1, Valérie Bousson 1 1 Laboratoire de Radiologie Expérimentale, Paris, France et Assistance Publique-Hôpitaux de Paris 2 IMP, Erlangen, Germany 3 Clinical Radiology, The Royal Infirmary, and Imaging Science and Biomedical Engineering, University of Manchester, Angleterre 4 ENSAM, Paris, France
2
v BMD Geometry and bone architecture Quantity and bone mineral content Bone tissue distribution INTRODUCTION
3
MAIN OBJECTIVE Evaluate the performance of four techniques in predicting the failure load : -Three imaging modalities: Radiographs (XR), Dual- energy X-ray Absorptiometry (DXA), Quantitative Computed Tomography (QCT) with dedicated software MIAF-Femur -and one numerical analysis method: Finite Element Model (FEM)
4
SECONDARY OBJECTIVES Identify the geometric or densitometric parameters strongly related with the bone failure load Study the combination of these techniques in the prediction of bone failure load
5
MATERIAL and METHODS 40 pairs of excised femurs 24 women, 16 men Age of death: 47-100 years [Mean: 81 years, SD: 12.1]
6
MATERIAL and METHODS 40 pairs of femurs XR DXAQCT Finite Element Models (FEM)
7
MATERIAL and METHODS 40 pairs of femurs XR DXAQCT Finite Element Models (FEM) Mechanical testing with bone fracture
8
MATERIAL and METHODS Hip Radiograph (XR) Position in medial rotation Focus to film distance: 120 cm Tube load: 45 kV, 4 mAs Table Prestige, GE
9
MATERIAL and METHODS Hip Radiograph (XR) Independently measuring of 16 XR variables potentially involved in bone strength (*) Two radiologists Mean of two measurements for each parameters (*) Glüer CC et al. J Bone Miner Res 1994; Bergot C et al. Osteoporos Int. 2002
10
MATERIAL and METHODS Dual-energy X-ray Absorptiometry (DXA) Position in medial rotation Immersion in a water bath to simulate (soft tissue density) Three areal BMD: Integral, Trochanter and Neck Appareil Hologic QDR 1000
11
MATERIAL and METHODS QCT + MIAF Femur 0 mg HA/ml 200 mg HA/ml Somatom Volume Zoom 4, Siemens Acquisition parameters 120 kV 225 mAs collimation: 4 x 1mm pitch: 1 Reconstructions parameters Slice thickness: 1 mm FOV: 150 mm Femoral head- Lesser trochanter Pixel size: 0.292 mm Kernel: B40 Osteophantom, Siemens
12
MATERIAL and METHODS QCT+ MIAF Femur -Institute of Medical Physics, University of Erlangen, Erlangen, Germany -Semi automatic 3-D segmentation of the proximal femur - Neck Coordinate System (NCS) NCS
13
MATERIAL and METHODS QCT+ MIAF Femur 47 parameters - Six volumes of interest (VOI) Head, Neck, Neckbox, Trochanter, Trochanterslice et Intertrochanter - Densitometric parameters: BMD and Volume - Geometric parameters 4 cortical thicknesses, 18 moments of inertia (MOI)
14
MATERIAL and METHODS Finite Element Models (FEM) Numerical tool analysis Quantify bone behaviour subject to mechanical stresses Based on QCT analysis “ Mesh network” Generic reference Model (Duchemin et al.) Young’s modulus distribution Numerical Failure Load FL num
15
MATERIAL and METHODS Mechanical testing of bone rupture Two configurations: Stance and Lateral Experimental failure load (Newton), F EXP TROCHANTERIC LATERAL Configuration CERVICAL STANCE Configuration INSTROM 5500
16
RESULTS Stepwise regression XR STANCE Configuration r 2 =0.66 ITW MCFS LATERAL Configuration r 2 =0.63 ITW MCFS
17
RESULTS Stepwise regression DXA STANCE Configuration LATERAL Configuration r 2 =0.73 aBMD_Total r 2 =0.79 aBMD_Trochanter
18
RESULTS Stepwise regression QCT-MIAF Femur STANCE ConfigurationLATERAL Configuration r 2 =0.74 Neck Axial Moment of inertia (AMIM) vBMD InterTrochanter r 2 =0.83 TrochanterSlice axial moment of inertia vBMD Trochanter
19
RESULTS Linear regression Finite Element Model (FEM) STANCE ConfigurationLATERAL Configuration r 2 =0.87r 2 =0.82 F EXP =F O (FL NUM )
20
RESULTS Multiple regression XR + DXA STANCE ConfigurationLATERAL Configuration r 2 =0.82 ITW, MCFS aBMD_Tot r 2 =0.84 ITW, MCFS aBMD_Trochanter
21
RESULTS Multiple regression QCT + DXA STANCE ConfigurationLATERAL Configuration r 2 = 0.80r 2 =0.87
22
DISCUSSION and CONCLUSION Prediction of QCT and FEM ++ Densitometric parameters: aBMD and vBMD in Trochanter ++ Geometric parameters: - Cortical thickness (XR) - Moment of inertia (QCT) : elactic properties and BMD inhomogeneities Combination of geometric and densitometric parameters (QCT, XR + DXA)
23
DISCUSSION and CONCLUSION Limits of DXA Geometric parameters ++ Trochanteric region discriminating for bone strength : ITW (RX) + aBMD Trochanter (DXA) + vBMD Trochanter (QCT)
24
Thank you for your attention
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.