Presentation is loading. Please wait.

Presentation is loading. Please wait.

UMass Lowell Computer Science 91.404 Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Final Review Mon. 12/10-Wed. 12/12.

Similar presentations


Presentation on theme: "UMass Lowell Computer Science 91.404 Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Final Review Mon. 12/10-Wed. 12/12."— Presentation transcript:

1 UMass Lowell Computer Science 91.404 Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Final Review Mon. 12/10-Wed. 12/12

2 Overview of Next 2 Lectures ä Review of some key course material ä Review handouts: ä 43-page handout on web from midterm time frame ä problems & solutions from previous semesters ä problems & solutions from 91.404 review part of 91.503 midterm exam, fall 2001 ä Final Exam: ä Course Grade ä Logistics, Coverage, Format ä Handout for basis of part of test ä Course Evaluations (Wednesday)

3 Review of Key Course Material

4 What’s It All About? ä Algorithm: ä steps for the computer to follow to solve a problem ä Problem Solving Goals: ä recognize structure of some common problems ä understand important characteristics of algorithms to solve common problems ä select appropriate algorithm & data structures to solve a problem ä tailor existing algorithms ä create new algorithms

5 Some Algorithm Application Areas Computer Graphics Geographic Information Systems Robotics Bioinformatics Astrophysics Medical Imaging Telecommunications Design Apply Analyze

6 Tools of the Trade ä Algorithm Design Patterns such as: ä binary search ä divide-and-conquer ä greedy ä Data Structures such as: ä trees, linked lists, stacks, queues, hash tables, graphs Growth of Functions Summations Recurrences Sets Probability MATH Proofs

7 Discrete Math Review Chapters 1-6 Growth of Functions, Summations, Recurrences, Sets, Counting, Probability

8 Topics ä Discrete Math Review : Chapters 1-6 ä Solving Summations & Recurrences ä Sets, Basic Tree & Graph concepts ä Counting: Permutations/Combinations ä Probability: Basics, including Expectation of a Random Variable ä Proof Techniques: Induction ä Basic Algorithm Analysis Techniques: Chapters 1-6 ä Asymptotic Growth of Functions ä Types of Input: Best/Average/Worst ä Bounds on Algorithm vs. Bounds on Problem ä Algorithmic Paradigms/Design Patterns: Divide-and-Conquer ä Analyze pseudocode running time to form summations &/or recurrences

9 What are we measuring? ä Some Analysis Criteria: ä Scope ä The problem itself? ä A particular algorithm that solves the problem? ä “Dimension” ä Time Complexity? Space Complexity? ä Type of Bound ä Upper? Lower? Both? ä Type of Input ä Best-Case? Average-Case? Worst-Case? ä Type of Implementation ä Choice of Data Structure

10 Function Order of Growth O( ) upper bound  ( ) lower bound  ( ) upper & lower bound n 1 n lg(n) n lg 2 (n) 2n2n2n2n n5n5n5n5 lg(n) lg(n)lglg(n) n2n2n2n2 know how to use asymptotic complexity notation to describe time or space complexity know how to order functions asymptotically (behavior as n becomes large) shorthand for inequalities

11 Types of Algorithmic Input Best-Case Input: of all possible algorithm inputs of size n, it generates the “best” result for Time Complexity: “best” is smallest running time for Time Complexity: “best” is smallest running time Best-Case Input Produces Best-Case Running Time Best-Case Input Produces Best-Case Running Time provides a lower bound on the algorithm’s asymptotic running time provides a lower bound on the algorithm’s asymptotic running time (subject to any implementation assumptions) (subject to any implementation assumptions) for Space Complexity: “best” is smallest storage for Space Complexity: “best” is smallest storage Average-Case Input Worst-Case Input these are defined similarly Best-Case Time <= Average-Case Time <= Worst-Case Time

12 Bounding Algorithmic Time (using cases) n 1 n lg(n) n lg 2 (n) 2n2n2n2n n5n5n5n5 lg(n) lg(n)lglg(n) n2n2n2n2 T(n) =  (1) T(n) =  (2 n ) very loose bounds are not very useful! Worst-Case time of T(n) =  (2 n ) tells us that worst-case inputs cause the algorithm to take at most exponential time (i.e. exponential time is sufficient). But, can the algorithm every really take exponential time? (i.e. is exponential time necessary?) If, for arbitrary n, we find a worst-case input that forces the algorithm to use exponential time, then this tightens the lower bound on the worst-case running time. If we can force the lower and upper bounds on the worst-case time to match, then we can say that, for the worst-case running time, T(n) =  (2 n ) (i.e. we’ve found the minimum upper bound, so the bound is tight.) Using “case” we can discuss lower and/or upper bounds on: best-case running time or average-case running time or worst-case running time

13 Bounding Algorithmic Time (tightening bounds) n 1 n lg(n) n lg 2 (n) 2n2n2n2n n5n5n5n5 lg(n) lg(n)lglg(n) n2n2n2n2 T W (n) =  (2 n ) for example... Here we denote best-case time by T B (n); worst-case time by T W (n) T B (n) =  (1) 1st attempt T B (n) =  (n) 1st attempt 2nd attempt T W (n) =  (n 2 ) T B (n) =  (n) 2nd attempt 1st attempt T W (n) =  (n 2 ) Algorithm Bounds

14 ä Explore the problem to gain intuition: ä Describe it: What are the assumptions? (model of computation, etc...) ä Has it already been solved? ä Have similar problems been solved? (more on this later) ä What does best-case input look like? ä What does worst-case input look like? ä Establish worst-case upper bound on the problem using an algorithm ä Design a (simple) algorithm and find an upper bound on its worst-case asymptotic running time; this tells us problem can be solved in a certain amount of time. Algorithms taking more than this amount of time may exist, but won’t help us. ä Establish worst-case lower bound on the problem ä Tighten each bound to form a worst-case “sandwich” Approach increasing worst-case asymptotic running time as a function of n n 1 2n2n2n2n n2n2n2n2 n3n3n3n3 n4n4n4n4 n5n5n5n5

15 Know the Difference! n 1 2n2n2n2n n5n5n5n5 worst-case bounds on problem on problem An inefficient algorithm for the problem might exist that takes this much time, but would not help us. No algorithm for the problem exists that can solve it for worst-case inputs in less than linear time. Strong Bound: This worst-case lower bound on the problem holds for every algorithm that solves the problem and abides by our problem’s assumptions. Weak Bound: This worst-case upper bound on the problem comes from just considering one algorithm. Other, less efficient algorithms that solve this problem might exist, but we don’t care about them! Both the upper and lower bounds are probably loose (i.e. probably can be tightened later on).

16 Master Theorem Master Theorem : Let with a > 1 and b > 1. Then : Case 1: If f(n) = O ( n (log b a) -  ) for some  > o then T ( n ) =  ( n log b a ) Case 2: If f (n) =  (n log b a ) then T ( n ) =  (n log b a * log n ) Case 3: If f ( n ) =  (n log b (a +  ) for some  > o and if a f( n/b) N 0 then T ( n ) =  ( f ( n ) ) Use ratio test to distinguish between cases: f(n)/ f(n)/ n log b a Look for “polynomially larger” dominance.

17 CS Theory Math Review Sheet The Most Relevant Parts... ä p. 1  O, ,  definitions ä Series ä Combinations ä p. 2 Recurrences & Master Method ä p. 3 ä Probability ä Factorial ä Logs ä Stirling’s approx ä p. 4 Matrices ä p. 5 Graph Theory ä p. 6 Calculus ä Product, Quotient rules ä Integration, Differentiation ä Logs ä p. 8 Finite Calculus ä p. 9 Series CH2 CH2 CH3 CH3 CH4 CH3,4 CH3,4 CH5 CH6 CH3 CH2 CH3 CH16 CH5 & 23-25 CH2 CH2 Math fact sheet (courtesy of Prof. Costello) is on our web site.

18 Sorting Chapters 7-10 Heapsort, Quicksort, LinearTime-Sorting, Medians

19 Topics ä Sorting: Chapters 7-10 ä Sorting Algorithms: ä [Insertion & MergeSort from Chapters 1-6)], Heapsort, Quicksort, LinearTime-Sorting, Medians ä Comparison-Based Sorting and its lower bound ä Breaking the lower bound using special assumptions ä Tradeoffs: Selecting an appropriate sort for a given situation ä Time vs. Space Requirements ä Comparison-Based vs. Non-Comparison-Based

20 Heaps & HeapSort ä Structure: ä Nearly complete binary tree ä Convenient array representation ä HEAP Property: (for MAX HEAP) ä Parent’s label not less than that of each child ä Operations: strategy worst-case run-time ä HEAPIFY: swap downO(h) [h= ht] ä INSERT: swap upO(h) ä EXTRACT-MAX: swap, HEAPIFY O(h) ä MAX: view rootO(1) ä BUILD-HEAP: HEAPIFY O(n) ä HEAP-SORT: BUILD-HEAP, HEAPIFY O(nlgn) 16 1410 8793 241 1614108793241 1 2 3 4 5 6 7 8 9 10

21 QuickSort ä Divide-and-Conquer Strategy ä Divide: Partition array ä Conquer: Sort recursively ä Combine: No work needed ä Asymptotic Running Time:  Worst-Case:  (n 2 ) (partitions of size 1, n-1)  Best-Case:  (nlgn) (balanced partitions of size n/2)  Average-Case:  (nlgn) (balanced partitions of size n/2) ä Randomized PARTITION ä selects partition element randomly ä imposes uniform distribution Does most of the work on the way down (unlike MergeSort, which does most of work on the way back up (in Merge). 97324116141011 PARTITION Recursively sort right partition right partition left partition Recursively sort left partition

22 Comparison-Based Sorting In algebraic decision tree model, comparison-based sorting of n items requires  (n lg n) time. HeapSort To breaking the lower bound and obtain linear time, forego direct value comparisons and/or make stronger assumptions about input. InsertionSort MergeSort QuickSort  (n)  (n 2 ) BestCaseAverageCaseWorstCase Time: Algorithm:  (n lg n)   (n lg n)  (n lg n)  (n lg n)  (n lg n)  (n lg n)  (n 2 )

23 Data Structures Chapters 11-14 Stacks, Queues, LinkedLists, Trees, HashTables, Binary Search Trees, Balanced Trees

24 Topics ä Data Structures: Chapters 11-14 ä Abstract Data Types: their properties/invariants ä Stacks, Queues, LinkedLists, (Heaps from Chapter 7), Trees, HashTables, Binary Search Trees, Balanced (Red/Black) Trees ä Implementation/Representation choices -> data structure ä Dynamic Set Operations: ä Query [does not change the data structure] ä Search, Minimum, Maximum, Predecessor, Successor ä Manipulate: [can change data structure] ä Insert, Delete ä Running Time & Space Requirements for Dynamic Set Operations for each Data Structure ä Tradeoffs: Selecting an appropriate data structure for a situation ä Time vs. Space Requirements ä Representation choices ä Which operations are crucial?

25 Hash Table ä Structure: ä n << N (number of keys in table much smaller than size of key universe) ä Table with m elements ä m typically prime ä Hash Function: ä Not necessarily a 1-1 mapping ä Uses mod m to keep index in table ä Collision Resolution: ä Chaining: linked list for each table entry ä Open addressing: all elements in table ä Linear Probing: ä Quadratic Probing: Load Factor: Example:

26 Linked Lists ä Types ä Singly vs. Doubly linked ä Pointer to Head and/or Tail ä NonCircular vs. Circular ä Type influences running time of operations 9 4 3 / head9 4 3 / head tail9 4 3 head

27 Binary Tree Traversal ä “Visit” each node once  Running time in  (n) for an n-node binary tree ä Preorder: ABDCEF ä Visit node ä Visit left subtree ä Visit right subtree ä Inorder: DBAEFC ä Visit left subtree ä Visit node ä Visit right subtree ä Postorder: DBFECA ä Visit left subtree ä Visit right subtree ä Visit node B E C F D A

28 Binary Search Tree B D F E A C ä Structure: ä Binary tree ä BINARY SEARCH TREE Property: ä For each pair of nodes u, v: ä If u is in left subtree of v, then key[u] <= key[v] ä If u is in right subtree of v, then key[u] >= key[v] ä Operations: strategy worst-case run-time ä TRAVERSAL: INORDER, PREORDER, POSTORDER O(h) [h= ht] ä SEARCH: traverse 1 branch using BST property O(h) ä INSERT: search O(h) ä DELETE: splice out (cases depend on # children) O(h) ä MIN: go left O(h) ä MAX: go right O(h) ä SUCCESSOR: MIN if rt subtree; else go up O(h) ä PREDECESSOR: analogous to SUCCESSOR O(h) ä Navigation Rules ä Left/Right Rotations that preserve BST property

29

30 Red-Black Tree Properties ä Every node in a red-black tree is either black or red ä Every null leaf is black ä No path from a leaf to a root can have two consecutive red nodes -- i.e. the children of a red node must be black ä Every path from a node, x, to a descendant leaf contains the same number of black nodes -- the “black height” of node x. newly inserted node

31 Graph Algorithms Chapters 23-25 DFS/BFS Traversals, Topological Sort, Minimum Spanning Trees, Shortest Paths

32 Topics ä Graph Algorithms: Chapters 23-25 ä Undirected, Directed Graphs ä Connected Components of an Undirected Graph ä Representations: Adjacency Matrix, Adjacency List ä Traversals: DFS and BFS ä Differences in approach: DFS: LIFO/stack vs. BFS:FIFO/queue ä Forest of spanning trees ä Vertex coloring, Edge classification: tree, back, forward, cross ä Shortest paths (BFS) ä Topological Sort ä Weighted Graphs ä Minimum Spanning Trees: 2 different approaches ä Shortest Paths: Single source: Dijkstra’s algorithm ä Tradeoffs: ä Representation Choice: Adjacency Matrix vs. Adjacency List ä Traversal Choice: DFS or BFS

33 Introductory Graph Concepts: Representations B E C F D A B E C F D A ä Undirected Graph ä Directed Graph (digraph) A B C D E F ABCDEF ABCDEF A BC B ACEF C AB D E E BDF F BE A BC B CEF C D D E BD F E Adjacency Matrix Adjacency List Adjacency Matrix Adjacency List

34 SEARCHING Elementary Graph Algorithms: SEARCHING: DFS, BFS ä Breadth-First-Search (BFS): ä BFS  vertices close to v are visited before those further away  FIFO structure  queue data structure ä Shortest Path Distance ä From source to each reachable vertex ä Record during traversal ä Foundation of many “shortest path” algorithms See DFS, BFS Handout for PseudoCode ä Depth-First-Search (DFS): ä DFS backtracks  visit most recently discovered vertex  LIFO structure  stack data structure ä Encountering, finishing times : “well- formed” nested (( )( ) ) structure ä DFS of undirected graph produces only back edges or tree edges ä Directed graph is acyclic if and only if DFS yields no back edges for unweighted directed or undirected graph G=(V,E) Time: O(|V| + |E|) adj listO(|V| 2 ) adj matrix predecessor subgraph = forest of spanning trees Vertex color shows status: not yet encountered encountered, but not yet finished finished

35 Elementary Graph Algorithms: DFS, BFS ä Review problem: TRUE or FALSE? ä The tree shown below on the right can be a DFS tree for some adjacency list representation of the graph shown below on the left. B E C F D A A C B E D F Tree Edge Cross Edge Back Edge

36 Elementary Graph Algorithms: Topological Sort source: 91.503 textbook Cormen et al. TOPOLOGICAL-SORT(G) 1 DFS(G) computes “finishing times” for each vertex 2 as each vertex is finished, insert it onto front of list 3 return list for Directed, Acyclic Graph (DAG) G=(V,E) Produces linear ordering of vertices. For edge (u,v), u is ordered before v. See also 91.404 DFS/BFS slide show

37 Minimum Spanning Tree: Greedy Algorithms A B C D E F G 2 2 1 1 3 4 4 5 6 6 8 7 source: 91.503 textbook Cormen et al. for Undirected, Connected, Weighted Graph G=(V,E) Produces minimum weight tree of edges that includes every vertex. Invariant: Minimum weight spanning forest Becomes single tree at end Invariant: Minimum weight tree Spans all vertices at end Time: O(|E|lg|E|) given fast FIND-SET, UNION Time: O(|E|lg|V|) = O(|E|lg|E|) slightly faster with fast priority queue

38 Minimum Spanning Trees ä Review problem: ä For the undirected, weighted graph below, show 2 different Minimum Spanning Trees. Draw each using one of the 2 graph copies below. Thicken an edge to make it part of a spanning tree. What is the sum of the edge weights for each of your Minimum Spanning Trees? A B C D E F G 2 2 1 1 3 4 4 5 6 6 8 7

39 Single Source Shortest Paths Dijkstra’s Algorithm ä See separate ShortestPath 91.404 slide show A B C D E F G 2 2 1 1 3 4 4 5 6 6 8 7 source: 91.503 textbook Cormen et al. for (nonnegative) weighted, directed graph G=(V,E)

40 Single Source Shortest Paths Dijkstra’s Algorithm ä Review problem: ä ä For the directed, weighted graph below, find the shortest path that begins at vertex A and ends at vertex F. List the vertices in the order that they appear on that path. What is the sum of the edge weights of that path? A B C D E F G 2 2 1 1 3 4 4 5 6 6 8 7 Why can’t Dijkstra’s algorithm handle negative-weight edges?

41 FINAL EXAM Logistics, Coverage, Format Handout for basis of part of test

42 Course Grading ä Homework 40% ä Exam 1 15% (closed book) ä Midterm 20% (open book) ä Final Exam 25% (open book) Results are scaled if necessary. Consider checking HW score status with us before final

43 Final Exam: Logistics ä Tuesday, 12/18 ä Olsen 311: 11:30 a.m. – 2:30 p.m. ä Open book, open notes ä Closed computers, neighbors ä Cumulative ä Worth 25% of grade Note change from registrar’s room number

44 Text/Chapter/Topic Coverage ä Discrete Math Review & Basic Algorithm Analysis Techniques : Chapters 1-6 ä Summations, Recurrences, Sets, Trees, Graph, Counting, Probability, Growth of Functions, Divide-and-Conquer ä Sorting: Chapters 7-10 ä Heapsort, Quicksort, LinearTime-Sorting, Medians ä Data Structures: Chapters 11-14 ä Stacks, Queues, LinkedLists, Trees, HashTables, Binary Search Trees, Balanced (Red/Black) Trees ä Graph Algorithms: Chapters 23-25 ä Traversal, MinimumSpanningTrees, Shortest Paths

45 Format ä Mixture of questions of the following types: 1) Multiple Choice 2) True/False 3) Short Answer 4) Analyze Pseudo-Code and/or Data Structure 5) Solve a Problem by Designing an Algorithm ä Select an appropriate paradigm/ design pattern ä Select appropriate data structures ä Write pseudo-code ä Justify correctness ä Analyze asymptotic complexity ~70% ~30%

46 FINAL EXAM HANDOUT To Be Given Wednesday


Download ppt "UMass Lowell Computer Science 91.404 Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Final Review Mon. 12/10-Wed. 12/12."

Similar presentations


Ads by Google