Presentation is loading. Please wait.

Presentation is loading. Please wait.

+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.

Similar presentations


Presentation on theme: "+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation."— Presentation transcript:

1 + The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation

2 + Chapter 3 Describing Relationships 3.1Scatterplots and Correlation 3.2Least-Squares Regression

3 + Section 3.1 Scatterplots and Correlation After this section, you should be able to… IDENTIFY explanatory and response variables CONSTRUCT scatterplots to display relationships INTERPRET scatterplots MEASURE linear association using correlation INTERPRET correlation Learning Targets

4 + Scatterplots and Correlation Explanatory and Response VariablesMost statistical studies examine data on more than one variable. In many of these settings, the two variables playdifferent roles. Definition: A response variable measures an outcome of a study. An explanatory variable may help explain or influence changes in a response variable. Note: In many studies, the goal is to show that changes in one or more explanatory variables actually cause changes in a response variable. However, other explanatory-response relationships don’t involve direct causation.

5 + Scatterplots and Correlation Displaying Relationships: ScatterplotsThe most useful graph for displaying the relationship between two quantitative variables is a scatterplot. Definition: A scatterplot shows the relationship between two quantitative variables measured on the same individuals. The values of one variable appear on the horizontal axis, and the values of the other variable appear on the vertical axis. Each individual in the data appears as a point on the graph. 1.Decide which variable should go on each axis. Remember, the eXplanatory variable goes on the X-axis! 2.Label and scale your axes. 3.Plot individual data values. How to Make a Scatterplot

6 + Scatterplots and Correlation Displaying Relationships: ScatterplotsMake a scatterplot of the relationship between body weight and pack weight. Since Body weight is our eXplanatory variable, be sure to place it on the X-axis! Body weight (lb)120187109103131165158116 Backpack weight (lb)2630262429353128

7 + Scatterplots and Correlation Interpreting Scatterplots To interpret a scatterplot, follow the basic strategy of data analysis from Chapters 1 and 2. Look for patterns andimportant departures from those patterns. As in any graph of data, look for the overall pattern and for striking departures from that pattern. You can describe the overall pattern of a scatterplot by the direction, form, and strength of the relationship. An important kind of departure is an outlier, an individual value that falls outside the overall pattern of the relationship. How to Examine a Scatterplot

8 Copyright © 2010 Pearson Education, Inc. Slide 7 - 8 Looking at Scatterplots (cont.) When looking at scatterplots, we will look for direction, form, strength, and unusual features. Direction: A pattern that runs from the upper left to the lower right is said to have a negative direction. A trend running the other way has a positive direction.

9 Copyright © 2010 Pearson Education, Inc. Slide 7 - 9 Looking at Scatterplots (cont.) The figure shows a negative direction between the year since 1970 and the and the prediction errors made by NOAA. As the years have passed, the predictions have improved (errors have decreased). Can the NOAA predict where a hurricane will go?

10 Copyright © 2010 Pearson Education, Inc. Slide 7 - 10 Looking at Scatterplots (cont.) This example shows a negative association between central pressure and maximum wind speed As the central pressure increases, the maximum wind speed decreases.

11 Copyright © 2010 Pearson Education, Inc. Slide 7 - 11 Looking at Scatterplots (cont.) Form: If there is a straight line (linear) relationship, it will appear as a cloud or swarm of points stretched out in a generally consistent, straight form.

12 Copyright © 2010 Pearson Education, Inc. Slide 7 - 12 Looking at Scatterplots (cont.) Form: If the relationship isn’t straight, but curves gently, while still increasing or decreasing steadily, we can often find ways to make it more nearly straight.

13 Copyright © 2010 Pearson Education, Inc. Slide 7 - 13 Looking at Scatterplots (cont.) Form: If the relationship curves sharply, the methods of this book cannot really help us.

14 Copyright © 2010 Pearson Education, Inc. Slide 7 - 14 Looking at Scatterplots (cont.) Strength: At one extreme, the points appear to follow a single stream (whether straight, curved, or bending all over the place).

15 Copyright © 2010 Pearson Education, Inc. Slide 7 - 15 Looking at Scatterplots (cont.) Strength: At the other extreme, the points appear as a vague cloud with no discernable trend or pattern: Note: we will quantify the amount of scatter soon.

16 Copyright © 2010 Pearson Education, Inc. Slide 7 - 16 Looking at Scatterplots (cont.) Unusual features: Look for the unexpected. Often the most interesting thing to see in a scatterplot is the thing you never thought to look for. One example of such a surprise is an outlier standing away from the overall pattern of the scatterplot. Clusters or subgroups should also raise questions.

17 + Scatterplots and Correlation Interpreting Scatterplots DirectionFormStrength Outlier There is one possible outlier, the hiker with the body weight of 187 pounds seems to be carrying relatively less weight than are the other group members. There is a moderately strong, positive, linear relationship between body weight and pack weight. It appears that lighter students are carrying lighter backpacks.

18 + Scatterplots and Correlation Interpreting Scatterplots Definition: Two variables have a positive association when above-average values of one tend to accompany above-average values of the other, and when below-average values also tend to occur together. Two variables have a negative association when above-average values of one tend to accompany below-average values of the other. Consider the SAT example from page 144. Interpret the scatterplot. DirectionFormStrength There is a moderately strong, negative, curved relationship between the percent of students in a state who take the SAT and the mean SAT math score. Further, there are two distinct clusters of states and two possible outliers that fall outside the overall pattern.

19 + Scatterplots and Correlation Measuring Linear Association: CorrelationA scatterplot displays the strength, direction, and form of the relationship between two quantitative variables. Linear relationships are important because a straight line is a simple pattern that is quite common. Unfortunately, our eyes are not goodjudges of how strong a linear relationship is. Definition: The correlation r measures the strength of the linear relationship between two quantitative variables. r is always a number between -1 and 1 r > 0 indicates a positive association. r < 0 indicates a negative association. Values of r near 0 indicate a very weak linear relationship. The strength of the linear relationship increases as r moves away from 0 towards -1 or 1. The extreme values r = -1 and r = 1 occur only in the case of a perfect linear relationship.

20 + Scatterplots and Correlation Measuring Linear Association: Correlation

21 + Scatterplots and Correlation CorrelationThe formula for r is a bit complex. It helps us to see what correlation is, but in practice, you should use your calculatoror software to find r. Suppose that we have data on variables x and y for n individuals. The values for the first individual are x 1 and y 1, the values for the second individual are x 2 and y 2, and so on. The means and standard deviations of the two variables are x-bar and s x for the x-values and y-bar and s y for the y-values. The correlation r between x and y is: How to Calculate the Correlation r

22 + Scatterplots and Correlation Facts about CorrelationHow correlation behaves is more important than the details of the formula. Here are some important facts about r. 1.Correlation makes no distinction between explanatory and response variables. 2.r does not change when we change the units of measurement of x, y, or both. 3.The correlation r itself has no unit of measurement. Cautions: Correlation requires that both variables be quantitative. Correlation does not describe curved relationships between variables, no matter how strong the relationship is. Correlation is not resistant. r is strongly affected by a few outlying observations. Correlation is not a complete summary of two-variable data.

23 Copyright © 2010 Pearson Education, Inc. Slide 7 - 23 Correlation Conditions Correlation measures the strength of the linear association between two quantitative variables. Before you use correlation, you must check several conditions: Quantitative Variables Condition Straight Enough Condition Outlier Condition

24 Copyright © 2010 Pearson Education, Inc. Slide 7 - 24 Correlation Conditions (cont.) Quantitative Variables Condition: Correlation applies only to quantitative variables. Don’t apply correlation to categorical data masquerading as quantitative. Check that you know the variables’ units and what they measure.

25 Copyright © 2010 Pearson Education, Inc. Slide 7 - 25 Correlation Conditions (cont.) Straight Enough Condition: You can calculate a correlation coefficient for any pair of variables. But correlation measures the strength only of the linear association, and will be misleading if the relationship is not linear.

26 Copyright © 2010 Pearson Education, Inc. Slide 7 - 26 Correlation Conditions (cont.) Outlier Condition: Outliers can distort the correlation dramatically. An outlier can make an otherwise small correlation look big or hide a large correlation. It can even give an otherwise positive association a negative correlation coefficient (and vice versa). When you see an outlier, it’s often a good idea to report the correlations with and without the point.

27 Copyright © 2010 Pearson Education, Inc. Slide 7 - 27 Correlation Properties (cont.) Correlation measures the strength of the linear association between the two variables. Variables can have a strong association but still have a small correlation if the association isn’t linear. Correlation is sensitive to outliers. A single outlying value can make a small correlation large or make a large one small.

28 Copyright © 2010 Pearson Education, Inc. Slide 7 - 28 Correlation ≠ Causation Whenever we have a strong correlation, it is tempting to explain it by imagining that the predictor variable has caused the response to help. Scatterplots and correlation coefficients never prove causation. A hidden variable that stands behind a relationship and determines it by simultaneously affecting the other two variables is called a lurking variable.

29 Copyright © 2010 Pearson Education, Inc. Slide 7 - 29 What Can Go Wrong? Don’t say “correlation” when you mean “association.” More often than not, people say correlation when they mean association. The word “correlation” should be reserved for measuring the strength and direction of the linear relationship between two quantitative variables.

30 Copyright © 2010 Pearson Education, Inc. Slide 7 - 30 What Can Go Wrong? Don’t correlate categorical variables. Be sure to check the Quantitative Variables Condition. Don’t confuse “correlation” with “causation.” Scatterplots and correlations never demonstrate causation. These statistical tools can only demonstrate an association between variables.

31 Copyright © 2010 Pearson Education, Inc. Slide 7 - 31 What Can Go Wrong? (cont.) Don’t assume the relationship is linear just because the correlation coefficient is high. Here the correlation is 0.979, but the relationship is actually bent.

32 Copyright © 2010 Pearson Education, Inc. Slide 7 - 32 What Can Go Wrong? (cont.) Beware of outliers. Even a single outlier can dominate the correlation value. Make sure to check the Outlier Condition.

33 + Section 3.1 Scatterplots and Correlation In this section, we learned that… A scatterplot displays the relationship between two quantitative variables. An explanatory variable may help explain, predict, or cause changes in a response variable. When examining a scatterplot, look for an overall pattern showing the direction, form, and strength of the relationship and then look for outliers or other departures from the pattern. The correlation r measures the strength and direction of the linear relationship between two quantitative variables. Summary

34 + Looking Ahead… We’ll learn how to describe linear relationships between two quantitative variables. We’ll learn Least-squares Regression line Prediction Residuals and residual plots The Role of r 2 in Regression Correlation and Regression Wisdom In the next Section…


Download ppt "+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation."

Similar presentations


Ads by Google