Download presentation
Presentation is loading. Please wait.
Published byAvice Dalton Modified over 8 years ago
1
Double-Pionic Fusion in Nucleon Collisions on Few Body Systems - The ABC Effect and its Possible Origin Wasa-at-Cosy Celsius Wasa
2
First step into the ABC Alexander Abashian, Norman E. Booth and Kenneth M. Crowe, Phys. Rev. Lett. 5, 258 (1960) Alexander Abashian, Norman E. Booth and Kenneth M. Crowe, Phys. Rev. Lett. 5, 258 (1960) π 2 π Phase Space inclusive
3
All of ABC No ABC effect! ABC effect
4
ΔΔ ΔΔ Large π π invariant mass Small π π invariant mass π N Δ π N Δ π N Δ π N Δ p n Δ Δ d π π
5
F. Plouin et. al. Nucl. Phys. A302 (1978), 413-422 ABC and ΔΔ models π π π π π π F. Plouin, P. Fleury, C. Wilkin PRL 65 (1990) 692
6
Results from new exclusive measurements
7
WASA 4 Detector 3 He/d COSY/
8
What we actually did p n p
9
p d
10
Total xsection pn d + - pn d 0 0 Tp = 1.0 GeVTp = 1.2 GeVTp = 1.4 GeV ( + 0 )= (I=1) ( + - )=0.5 (I=1)+2 (I=0) ( 0 0 )= (I=0)=0.2 (I=1) pp d + 0
11
Total x-section d threshold mass
12
2D x-section
13
Qualitative description n p n Δ Δ d π π + Δ Δ d π π p
14
Total xsection slices: qualitative description
15
M.Bashkanov et. al, Phys. Lett. B637 (2006) 223-228 (I=0,1) (I=0) pd 3 Heππ, T p =0.89 GeV
16
Conclusion ABC effect due to narrow S-channel resonance with ABC effect due to narrow S-channel resonance with – – – ABC resonance: ABC resonance: – eigenstate in isoscalar pn and systems – robust enough to survive in nuclear medium More than just a state ? More than just a state ? –Is it a genuine dibaryon?
17
Outlook Finish data analysis Finish data analysis Perform Partial Wave Analysis (J PC ) Perform Partial Wave Analysis (J PC ) Analysis of Analysis of Measure Measure Measure pn elastic scattering Measure pn elastic scattering
18
Multiplet 10 10=35 28 27 10 * *+ * * + * * Y( )=2 I( )=0
19
* *
20
Dalitz plot
21
Total xsection slices: qualitative description
22
Parameters of a new state M R = 2.385 GeV = 53 MeV
23
Total x-section Tp = 1.0 GeV Tp = 1.2 GeV Tp = 1.4 GeV
24
ΔΔ versus Δ pd 3 Heππ, T p =895 MeV
25
ΔΔ ΔΔ π N Δ π N Δ π N Δ π N Δ Large π π invariant mass Small π π invariant mass
26
pn dππ, T p =1.03 GeV
27
M.Bashkanov et. al, Phys. Lett. B637 (2006) 223-228 (I=0,1) (I=0) pd 3 Heππ, T p =0.89 GeV
28
ΔΔ Resonance p n p n Δ Δ d π π Δ Δ d π π +
29
ΔΔ resonance in differential distributions Δ Δ π π Δ π π Δ Δ π π Δ + Parameter of F(q) is fitted here pd 3 Heππ q ΔΔ q
30
ΔΔ resonance parameters
31
Consistent description for d and 3 He case With ΔΔ resonance Without ΔΔ resonance pd 3 He pn d T p =0.895 GeV T p =1.03 GeV T p =1.35 GeV
32
Angular distributions ΔΔ bound ΔΔ peak full pd 3 He T p =0.895 GeV
33
Angular distributions ΔΔ bound ΔΔ pn d T p =1.03 GeV
34
Quantum numbers of the resonance From Fermi-statistics: J=1 +,3 + if L ΔΔ =0 3 S 1 ( d ) : S wave only 3 D 1 ( d ) : S + D waves 3 D 3 ( d ) : no S wave pn R d 0 0 1+1+ 3+3+ pn d 0 0 pn d 0 0 I=0,1I=0I=0,2 I=0
35
pp d + 0 no ABC * (k 1 x k 2 ) T p =1.1 GeV Control channel (NO ABC expected)
36
Data collected for pn d 0 0 T p =1.0, 1.1, 1.2, 1.3, 1.4 GeV T p =1.0, 1.1, 1.2, 1.3, 1.4 GeV To cover full resonance region To cover full resonance region To have overlaps between different energies, due to Fermi To have overlaps between different energies, due to Fermi To reduce systematical errors. To reduce systematical errors.
37
Results from dd +X beamtime Collected energies: T d = 0.8, 0.9, 1.01, 1.05, 1.117, 1.2, 1.25, 1.32, 1.4 GeV
38
Phase shifts pn pn Elastic scattering
39
Outlook Wasa-at-Cosy Wasa-at-Cosy Nov07-Dec07 dd runs Nov07-Dec07 dd runs Feb08 pd runs Feb08 pd runs
40
ΔΔ - FSI
41
Energy dependence of the low-mass enhancement unbound (ΔΔ) bound ΔΔ 27 MeVbound (ΔΔ) 27 MeV
42
FSI p n p n p n n n p n p n p n p p n d p n d p n d p n +++ + … +++…
43
3 S 1 phase shifts
44
3 D 3 phase shifts
45
ΔΔ resonance parameters
46
Effect of collision damping Without collision damping With collision damping
47
Δ resonance π N Δ π N Δ π N Δ L=1
48
Total x-section for ΔΔ resonance ABC channels (I=0) No ABC (I=1)
49
First step into the ABC Alexander Abashian, Norman E. Booth and Kenneth M. Crowe, Phys. Rev. Lett. 5, 258 (1960) Alexander Abashian, Norman E. Booth and Kenneth M. Crowe, Phys. Rev. Lett. 5, 258 (1960) π 2 π Phase Space
50
All of ABC No ABC effect! ABC effect
51
Δ resonance π N Δ π N Δ π N Δ L=1
52
F. Plouin et. al. Nucl. Phys. A302 (1978), 413-422 ABC and ΔΔ models π π π π π π F. Plouin, P. Fleury, C. Wilkin PRL 65 (1990) 692
53
ΔΔ versus Reality
54
Total x-section for ABC channels (I=0) No ABC (I=1) pp d + 0
55
NΔ state in pp + d pp
56
Total x-section for ABC channels (I=0) No ABC (I=1) pp d + 0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.